The CLP Operational Model

Adapted from the model presented in Kim Marriott and Peter Stuckey, *Programming with Constraints: An Introduction*

Terminology

A user-defined constraint is of the form $p(t_1, \ldots, t_n)$ where p is an n-ary predicate and t_1, \ldots, t_n are expressions from the constraint domain.

A *literal* is either a primitive constraint or a user-defined constraint.

A *goal* is a sequence of literals L_1, \ldots, L_m . If m = 0 the goal is *empty* and is written \square .

A *rule* R is of the form A : -B where A is a user-defined constraint and B is a goal. A is the *head* of R and B is the body.

A *fact* is a rule with the empty goal as its body: $A := \square$ and is simply written as A.

A program is a sequence of rules.

Rewritings

Let goal G be of the form

$$L_1, \ldots, L_{i-1}, L_i, L_{i+1}, \ldots, L_m$$

where L_i is a user-defined constraint $p(t_1, \ldots, t_n)$.

Let rule R be of the form $p(t_1, \ldots, t_n) := B$.

Let ρ be a renaming (i.e. a mapping that replaces variables with new ones).

A *rewriting* of G at L_i by R using ρ is the new goal formed from G by replacing L_i with

$$t_1 = \rho(s_1), \dots, t_n = \rho(s_n), \rho(B)$$

where ρ is chosen so that the variables in $\rho(R)$ do not appear in G.

Derivation Steps

A *state* is a pair $\langle G \mid C \rangle$ where G is a goal and C is a constraint. C is called the *constraint store*.

A derivation step from $\langle G_1 \mid C_1 \rangle$ to $\langle G_2 \mid C_2 \rangle$ is written:

$$\langle G_1 \mid C_1 \rangle \Rightarrow \langle G_2 \mid C_2 \rangle$$

It is defined as follows.

Let G_1 be the sequence of literals L_1, L_2, \ldots, L_m .

Case 1: L_1 is a primitive constraint. Then C_2 is $C_1 \wedge L_1$. If the constraint solver determines that C_2 is unsatisfiable, then G_2 is the empty goal; otherwise G_2 is L_2, \ldots, L_m .

Case 2: L_1 is a user-defined constraint. Let L_1 have the form $p(t_1, \ldots, t_n)$. Select a rule R in program whose head is a literal $p(s_1, \ldots, s_n)$. Then C_2 is C_1 and G_2 is found by a rewriting of G at L_1 using R. If there is no rule to use for the rewriting, then C_2 is false and G_2 is the empty goal.

Derivations

A *derivation* for a goal G is a sequence of derivation steps starting with $\langle G \mid true \rangle$.

A derivation can continue until the goal becomes empty. A derivation that can no longer continue can be either successful or failed.

A derivation is successful if the last state is $\langle \Box \mid C_n \rangle$, and the constraint solver doesn't determine that constraint C_n is unsatisfiable. The constraint that is the result of simplifying C_n with respect to the variables in G is an *answer* to G.

A derivation is failed if the last state is $\langle \Box \mid C_n \rangle$, and the constraint solver determines that constraint C_n is unsatisfiable.

Example Derivation

$CLP(\mathcal{R})$ program:

Consider the goal cf(A,B), double(A,200).

$$\langle \mathit{cf}(A,B), \mathit{double}(A,200) \mid \mathit{true} \rangle$$

 \Rightarrow

using R1:

$$\langle A = C, B = F, F = 1.8 * C + 32,$$

double(A, 200) | true \rangle

$$\Rightarrow$$

$$\langle B = F, F = 1.8 * C + 32, double(A, 200) \mid A = C \rangle$$

$$\Rightarrow$$

$$\langle F = 1.8 * C + 32, double(A, 200) \mid A = C, B = F \rangle$$

 \Rightarrow

$$\langle double(A, 200) \mid A = C, B = F, F = 1.8 * C + 32 \rangle$$

 \Rightarrow

using R2:

$$\langle A = X, 200 = Y, Y = 2 * X \mid A = C, B = F,$$

 $F = 1.8 * C + 32 \rangle$

$$\Rightarrow$$

$$\langle 200 = Y, Y = 2 * X \mid A = C, B = F,$$

 $F = 1.8 * C + 32, A = X \rangle$

 \Rightarrow

$$\langle Y = 2 * X \mid A = C, B = F, F = 1.8 * C + 32, A = X, 200 = Y \rangle,$$

 \Rightarrow

$$\langle \Box \mid A = C, B = F, F = 1.8 * C + 32, A = X, 200 = Y, Y = 2 * X \rangle$$

Simplifying with respect to the variables in G_0 (namely A, B) we get the answer A = 100, B = 212.

This is a successful derivation.

Derivation Trees

There may be more than one derivation for a goal. The derivation tree contains all the derivations for a given goal G. The CLP system will in effect incrementally construct the derivation tree as it searches for an answer.

Definition: a *derivation tree* for a goal G and program P is a tree with states as nodes. The root is $\langle G \mid true \rangle$. The children of each state $\langle G_i \mid C_i \rangle$ are the states that can be reached in a single derivation step. A state with two or more children is a *choicepoint*.

CLP(R) evaluates a goal by performing a depthfirst, left-to-right traversal of the goal's derivation tree. Whenever a success state is encountered the system returns the corresponding answer. The user can accept the answer, or reject it (so that traversal continues).

Simplified Derivation Trees

We can produce a *simplified derivation tree* by omitting uninteresting steps and simplifying the resulting constraints. A simplified derivation for a goal *G* includes the first and last states in the full derivation, and every state for which the first literal in the goal is a user-defined constraint.

Simplified derivation tree for the previous example:

$$\langle cf(A,B), double(A,200) \mid true \rangle$$
 \Rightarrow
 $\langle double(A,200) \mid B = 1.8 * A + 32 \rangle$
 \Rightarrow
 $\langle \Box \mid A = 100, B = 212 \rangle$