
'

&

$

%

CSE 341:
Programming Languages

Dan Grossman
Winter 2008

Lecture 27— Course Wrap-Up

Dan Grossman CSE341 Winter 2008, Lecture 27 1



'

&

$

%

Goals for today

• (Discuss mark-sweep garbage collection from last time)

• Describe some things we didn’t get to

– Not on the final

• Review key concepts/principles we did do and put them in
context

Dan Grossman CSE341 Winter 2008, Lecture 27 2



'

&

$

%

If we had 1 more OO lecture

class C {

void m(A a, B b);

void m(E e, F f);

void m(F f, E e);

}

How to resolve a call e0.m(e1,e2).

• Static overloading: Use the (compile-time) type of e1 and e2.

• Multimethods: Use the (run-time) class of what e1 and e2

evaluate to.

Java/C++ have static overloading.

Both semantics can have “no best match” errors since there may be
multiple methods that “match” but using different subsumptions.

Dan Grossman CSE341 Winter 2008, Lecture 27 3



'

&

$

%

What else?

Are all programming languages imperative, OO, or FP? No.

• Logic languages (e.g., Prolog)

• Scripting languages (Perl, Python, Ruby (as typically used))

• Query languages (SQL)

• Purely functional languages (no ref or set!)

• Visual languages, spreadsheet languages, GUI-builders,
text-formatters, hardware-synthesis, ...

• And most languages now have support for parallel
programming

Dan Grossman CSE341 Winter 2008, Lecture 27 4



'

&

$

%

Prolog in one example

append(nil, Lst2, Lst2).

append(cons(Hd,Tl), Lst2, cons(Hd,Tl2)) :=

append(Tl, Lst2, Tl2).

append(cons(1, cons(2, nil)), cons(3, cons(4, nil)), X)

% X = cons(1,cons(2,cons(3,cons(4,nil))))

append(cons(1, nil), cons(2,nil), cons(1, cons(2, nil)))

% yes

append(nil, cons(2,nil), cons(1, cons(2, nil)))

% no

append(cons(Hd,nil), Y, cons(1, cons(2, cons(3, nil))) )

% Hd = 1 Y = cons(2,cons(3,nil))

Dan Grossman CSE341 Winter 2008, Lecture 27 5



'

&

$

%

Prolog key ideas

• A program is a set of declarative proof rules.

• Operationally, it’s like a function that doesn’t distinguish
inputs from outputs.

• The implementation searches for the minimal constraints
necessary for a formula to be true.

• Different “queries” can run “forward” or “backward”

• This is Turing-complete; killer app is inherently search-oriented
tasks, which are common in AI.

Dan Grossman CSE341 Winter 2008, Lecture 27 6



'

&

$

%

Scripting Languages

Few “new” language constructs, but convenience for some
quick-and-dirty programs.

• File-system access very lightweight

• Lots of support for string-processing via regular expressions (a
different “pattern-matching”)

• Tend to have very few “errors” (array resizing, implicit variable
declaration, etc.)

Opinion:

• A fine tool for small tasks

• They tend to hide bugs rather than prevent them

• But you should learn to automate repetitive tasks!

Dan Grossman CSE341 Winter 2008, Lecture 27 7



'

&

$

%

Query Languages

Canonical example: Suppose there’s a big database and many
people need data from it. We could make lots of copies or let
people submit queries.

Key idea: Move the code to the data, not the data to the code.

Interestingly: We do not necessarily want the query language to be
as powerful as a Turing-machine!

SQL was carefully designed so every query terminates.

Dan Grossman CSE341 Winter 2008, Lecture 27 8



'

&

$

%

Purely Functional Languages

Example: Haskell

To make life without refs palatable, the default is “lazy”
(call-by-need) evaluation.

One-line example: let ones = 1::ones

Laziness can lead to elegant programming and really increases the
number of equivalent programs. In Haskell, (f x) + (f x) and
(f x) * 2 are contextually equivalent, always.

• Haskell does have monads, which allow a more imperative style.

• The implementation of laziness uses mutation, but in a
controlled way (we did this in Scheme).

Dan Grossman CSE341 Winter 2008, Lecture 27 9



'

&

$

%

Parallelism

(As now discussed in 303/451, but it’s a PL topic also), sometimes
you want multiple call stacks:

• For performance (especially with multicore)

• For structuring an application

The key questions are how to thread communicate and how do they
synchronize.

Easily a course in itself to learn different parallel programming
models.

Dan Grossman CSE341 Winter 2008, Lecture 27 10



'

&

$

%

But we still did a lot
A thorough understanding of higher-order programming, variable
scope, semantics of FP and OO, important idioms, static typing, ...

Oh, and you learned a healthy amount of 3 new languages.

Hopefully:

• The time you need to “pick up” a language will drop
dramatically (though you have to learn big libraries too)

• You will use mutation for what it’s good for and not to create
brittle programs with lots of unseen dependencies

• Understand syntax matters, but it’s not that interesting

• Apply idioms in languages other than where you learned them

• Recognize language-design is hard and semantics should not be
treated lightly.

Dan Grossman CSE341 Winter 2008, Lecture 27 11



'

&

$

%

Top 12 Concepts?

1. Code evaluates in environments – scope/resolution matters

2. Recursive data is processed with recursive functions

3. Without mutation, copying vs. aliasing is indistinguishable

4. Closures have many powerful uses.

5. Each-of vs. one-of

6. (Dis)Advantages of static typing – (and what is checked)

7. When evaluation occurs is important (see thunking/macros)

8. OO vs. FP: many similarities and a couple big differences

9. Parametric polymorphism vs. subtyping

10. Function-argument subtyping is contravariant

11. Can embed a language in another via constructors and
interpreters

12. Languages themselves are rich recursive definitions

Dan Grossman CSE341 Winter 2008, Lecture 27 12



'

&

$

%

Context

In most courses and jobs, a programming language is just a means
to an end (and only one of many means).

This course was perhaps your one chance to study languages as
designs that are themselves fascinating, beautiful, and sometimes
awkward

• And there’s much more to learn (441?)

I believe this makes you a better programmer, even if the rest of
your life is spent in Java and C (which it won’t be)

Dan Grossman CSE341 Winter 2008, Lecture 27 13


