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Lecture 18— DrScheme modules; abstraction with dynamic types
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Modularity

Recall from our ML module lecture some good things about modules:

• Namespace management (help keep names short and separate)

• Make some bindings inaccessible (private functions, data)

• Enforce invariants by using abstract types

– Data is reachable, but outside the module only limited things

can be done with it

• In our example:

– Rationals are always printed in reduced form.

– Clients can’t tell if rationals are kept in reduced form.
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Scheme vs. DrScheme

“Pure” Scheme (R5RS) has no module system or define-struct

• We’ll investigate how much of modules’ advantages we can get via

other means

DrScheme has a module system

• But in a dynamically typed language, there won’t be signatures

with abstract types

• We can get abstract types using define-struct instead

– Because it makes a new type not equal to any other type

– Quite different than ML approach but both work
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Life without modules

• Can hide private things using let

– Workable but awkward

– Making the define-struct “private” is a huge help
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The key to define-struct

It is essential to hiding parts of a define-struct that it is a fresh,

different type than any other type.

• In our example, hid the accessors, mutators, and constructor.

• Sometimes exposing some accessors makes sense.

Otherwise, someone could use other features (e.g., cons or set-car!)

to violate invariants.

It is still the case that any Scheme function can be called with any

argument, but we can control invariants on rationals.
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DrScheme modules

• provide for explicit list of what is available outside

– Can be “part” of define-struct

– Kind of like “part” of an ML datatype (kind of)

• require for using another module

– With optional prefixing of names for namespace management
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