
'

&

$

%

CSE 341:
Programming Languages

Dan Grossman

Winter 2008

Lecture 18— DrScheme modules; abstraction with dynamic types

Dan Grossman CSE341 Winter 2008, Lecture 18 1



'

&

$

%

Modularity

Recall from our ML module lecture some good things about modules:

• Namespace management (help keep names short and separate)

• Make some bindings inaccessible (private functions, data)

• Enforce invariants by using abstract types

– Data is reachable, but outside the module only limited things

can be done with it

• In our example:

– Rationals are always printed in reduced form.

– Clients can’t tell if rationals are kept in reduced form.

Dan Grossman CSE341 Winter 2008, Lecture 18 2



'

&

$

%

Scheme vs. DrScheme

“Pure” Scheme (R5RS) has no module system or define-struct

• We’ll investigate how much of modules’ advantages we can get via

other means

DrScheme has a module system

• But in a dynamically typed language, there won’t be signatures

with abstract types

• We can get abstract types using define-struct instead

– Because it makes a new type not equal to any other type

– Quite different than ML approach but both work

Dan Grossman CSE341 Winter 2008, Lecture 18 3



'

&

$

%

Life without modules

• Can hide private things using let

– Workable but awkward

– Making the define-struct “private” is a huge help

Dan Grossman CSE341 Winter 2008, Lecture 18 4



'

&

$

%

The key to define-struct

It is essential to hiding parts of a define-struct that it is a fresh,

different type than any other type.

• In our example, hid the accessors, mutators, and constructor.

• Sometimes exposing some accessors makes sense.

Otherwise, someone could use other features (e.g., cons or set-car!)

to violate invariants.

It is still the case that any Scheme function can be called with any

argument, but we can control invariants on rationals.

Dan Grossman CSE341 Winter 2008, Lecture 18 5



'

&

$

%

DrScheme modules

• provide for explicit list of what is available outside

– Can be “part” of define-struct

– Kind of like “part” of an ML datatype (kind of)

• require for using another module

– With optional prefixing of names for namespace management

Dan Grossman CSE341 Winter 2008, Lecture 18 6


