
CSE 341, Winter 2008, Lecture 14 Summary
Standard Disclaimer: These comments may prove useful, but certainly are not a complete summary of all
the important stuff we did in class. They may make little sense if you missed class, but hopefully will help
you organize and process what you have learned.

Scheme top-level: In ML, a top-level binding’s environment included only itself and earlier bindings. This

leads to a straightforward semantics, but it can be inconvenient (having to organize your functions in a
certain order) or limiting (which is why we had different syntax for mutual recursion). In Scheme, earlier
functions can refer to later ones, but this comes at the cost of more complicated rules, especially since
Scheme allows any binding to be mutated (with set!. The details of the more complicated rules are not
important, and you may assume what essentially all Scheme programmers do — that top-level bindings are
not mutated. Nonetheless, it is worth investigating how mutation of top-level definitions affects program
correctness because it motivates an important programming idiom that comes up throughout computer
science (particularly in operating systems and security): If data/code might change and you need to assume
it doesn’t, make a local copy.

This code fails because when we evaluate the y on the first line there is no x in the environment:

(define x y)
(define y 1)

However, this code defines f1 as a zero-argument function that returns 1 when called. That is because
all top-level definitions are included in a function’s environment, even top-level definitions added after the
function is defined.

(define f1 (lambda () y))
(define y 1)

However, we cannot really say f1 always returns 1, since if there is another top-level definition of y, it
will have the effect of mutation.

(define y 7) ; now (f1) evaluates to 7

Similarly, any code can use set! to change what value anything in the environment has.
Consider a more realistic example with a simple curried exponentiation function and a cube function

that uses partial application:

(define (pow y)
(lambda (x)
(if (= y 0)

1
(* x ((pow (- y 1)) x)))))

(define cube (pow 3))

For the corresponding ML code, we know any call to cube will “do the right thing”, but in Scheme that
assumes that nothing is mutated/redefined to break pow. If we later do (define pow 6) then the recursive
call in pow’s body will not be recursive at all — it will fail because pow is no longer bound to a function.
If we later do (define (pow y) (lambda (x) 2) we will produce the wrong answer. And if we later do
(define - +) (after all, - is just a binding so we can redefine it to be addition), then pow will go into an
infinite loop.

Though you should not bother in Scheme, the general solution to avoiding code breaking due to mutation
that is beyond your control is to make “private” copies of what must not change. For example, we could
define a version of pow in which there was a local environment that bound all the helper functions we needed
(including =, *, and -). That will work because top-level redefinitions will not change the local environment
we created.

1



Delayed Evaluation:

A key semantic issue for a language construct is when are its subexpressions evaluated. For example,
in Scheme (and similarly in Java and ML), given (e1 e2 ... en) we evaluate the function arguments e2,
..., en once before we execute the function body and given a function (lambda (...) ...) we do not
evaluate the body until it is called. We can contrast this rule (“evaluate arguments in advance”) with how
(if e1 e2 e3) works: we do not evaluate both e2 and e3. This is why:

(define (my-if-bad x y z) (if x y z))

is a function that cannot be used wherever you use an if-expression; the rules for evaluating subexpressions
are fundamentally different.

However, we can use the fact that function bodies are not evaluated until the function gets called to
make a more useful version of an “if function”:

(define (my-if x y z) (if x (y) (z)))

Now wherever we would write (if e1 e2 e3) we could instead write (my-if e1 (lambda () e2) (lambda () e3)).
The body of my-if either calls the zero-argument function bound to y or the zero-argument function bound
to z.

Though there is certainly no reason to wrap Scheme’s “if” in this way, the general idiom of using a
zero-argument function to delay evaluation (do not evaluate e2 now, do it later when/if the zero-argument
function is called) is very powerful. As convenient terminology/jargon, when we use a zero-argument function
to delay evaluation we call the function a thunk. You can even say, “thunk the argument” to mean “use
(lambda () e) instead of e”.

The rest of lecture considers 3 programming idioms; thunks are crucial in two of them and the third is
similar.

Streams:

A stream is an infinite sequence of values. We obviously cannot create such a sequence explicitly (it
would literally take forever), but we can create code that knows how to produce the infinite sequence and
other code that knows how to ask for however much of the sequence it needs.

Streams are very common in computer science. You can view the sequence of bits produced by a syn-
chronous circuit as a stream, one value for each clock cycle. The circuit does not know how long it should
run, but it can produce new values forever. The UNIX pipe (cmd1 | cmd2) is a stream; it causes cmd1 to
produce only as much output as cmd2 needs for input. More generally, streams can be a convenient division
of labor: one part of the software knows how to produce successive values in the infinite sequence but does
not know how many will be needed. Another part can determine how many are needed but does not know
how to generate them.

There are many ways to code up streams; we took the simple approach of representing a stream as a thunk
that when called produces a pair of (1) the first element in the sequence and (2) a thunk that represents
the stream for the second-through-infinity elements. Defining such thunks typically uses recursion. Here are
three examples:

(define ones (lambda () (cons 1 ones)))
(define nats
(letrec ([f (lambda (x) (cons x (lambda () (f (+ x 1)))))])
(lambda () (f 1))))

(define powers-of-two
(letrec ([f (lambda (x) (cons x (lambda () (f (* x 2)))))])
(lambda () (f 2))))

Given this encoding of streams and a stream s, we would get the first element via (car (s)), the sec-
ond element via (car ((cdr (s)))), the third element via (car ((cdr ((cdr (s)))))), etc. Remember
parentheses matter, (e) calls the thunk e.

2



We could write a higher-order function that takes a stream and a predicate-function and returns how
many stream elements are produced before the predicate-function returns true:

(define (number-until stream tester)
(letrec ([f (lambda (stream ans)

(let ([pr (stream)])
(if (tester (car pr))

ans
(f (cdr pr) (+ ans 1)))))])

(f stream 1)))

As an example, (number-until powers2 (lambda (x) (= x 16))) evaluates to 4.

Lazy Evaluation:

Suppose we have a very large computation that we know how to perform but we do not know if we need
to perform it. The rest of the application knows where it needs this computation and there may be a few
different places. If we thunk, then we may repeat the large computation many times. But if we do not thunk,
then we will perform the large computation even if we do not need to. To get the “best of both worlds,” we
can use a programming idiom known by a few different (and perhaps technically slightly different) names
(lazy-evaluation, call-by-need, promises). The idea is to use mutation (really) to remember the result from
first time we use the thunk so that we do not need to use the thunk again.

One simple implementation in Scheme would be:

(define (my-delay f)
(cons #f f))

(define (my-force th)
(if (car th)

(cdr th)
(begin (set-car! th #t)

(set-cdr! th ((cdr th)))
(cdr th))))

We can create a thunk f and pass it to my-delay. This returns a pair where the first field indicates we
have not used the thunk yet. Then my-force, if it sees the thunk has not been used yet, uses it and then uses
mutation to change the pair to hold the result of using the thunk. That way, any future calls to my-force
with the same pair will not repeate the computation.

We worked through an example with multiplication to see how this works.
Some languages (most notably Haskell and Miranda) use this approach for all function calls, i.e., the

semantics for function calls is different in these languages: If an argument is never used it is never evaluated,
else it is evaluated only once. This is called call-by-need whereas all the languages we will use are call-by-value
(arguments are fully evaluated before the call is made).

Memoization:

An idiom related to lazy evaluation that does not actually use thunks is memoization. If a function does
not have side-effects, then if we call it multiple times with the same argument(s), we do not actually have
to do the call more than once. Instead, we can look up what the answer was the first time we called the
function with the argument(s).

Whether this is a good idea or not depends on trade-offs. Keeping old answers in a table takes space and
table lookups do take some time, but compared to reporforming expensive computations it can be a big win.
Again, for this technique to even be correct requires that given the same arguments a function will always
return the same result and have no side-effects. So being able to use this memo table (i.e., do memoization)
is yet another advantage of avoiding mutation.

3



That said, to implement memoization we do use mutation: Whenever the function is called with an
argument we have not seen before, we compute the answer and then add the result to the table (via mutation).

As an example, we considered 3 versions of a function that takes an x and returns fibonacci(x). (A
fibonacci number is a well-known mathematic formula that is useful in modeling populations and such; see
the first version of the Scheme code for its straightforward definition.) Our first version has an exponential
run-time due to the two recursive calls, so it takes unsuitably long for numbers larger than a couple dozen.
Our second version fixes this by using an accumlator-style and only one recursive call. This has nothing to
do with memoization but reminds us that algorithms do matter. The third version is like the first version
except every recursive call uses memoization. As a result, our exponential algorithm “turns into” a linear
algorithm because at each “level of recursion” the first recursive call computes all the answers the second
recursive call needs.

Here is the version that does this memoization:

(define fibonacci3
(letrec([memo (list (cons 1 1) (cons 2 1))]

[f (lambda (x)
(let ([ans (assoc x memo)])
(if ans

(cdr ans)
(let ([new-ans (+ (f (- x 1))

(f (- x 2)))])
(begin
(set! memo (cons

(cons x new-ans)
memo))

new-ans)))))])
f))

4


