
'

&

$

%

CSE 341:
Programming Languages

Dan Grossman

Spring 2008

Lecture 8— Function Closures

Dan Grossman CSE341 Spring 2008, Lecture 8 1



'

&

$

%

Today

• Continue examples of functions taking and returning other

functions

• Discuss free variables in function bodies

• In general, discuss environments and lexical scope

• See key idioms using first-class functions (more next time)

Dan Grossman CSE341 Spring 2008, Lecture 8 2



'

&

$

%

If you remember one thing...

We evaluate expressions in an evironment, and function bodies in

an environment extended to map arguments to values.

But which one? The environment in which the function was defined!

An equivalent description:

• Functions are values, but they’re not just code.

• fun f p = e and fn p => e evaluate to values with two parts

(a “pair”): the code and the current environment

• Function application evaluates the “pair”’s function body in the

“pair”’s environment (extended)

• This “pair” is called a (function) closure.

There are lots of good reasons for this semantics.

For hw, exams, and competent programming, you must “get this”

Dan Grossman CSE341 Spring 2008, Lecture 8 3



'

&

$

%

Example 1

val x = 1

fun f y = x + y

val x = 2

val y = 3

val z = f (x+y)

Dan Grossman CSE341 Spring 2008, Lecture 8 4



'

&

$

%

Example 2

val x = 1

fun f y = let val x = 2 in fn z => x + y + z end

val x = 3

val g = f 4

val y = 5

val z = g 6

Dan Grossman CSE341 Spring 2008, Lecture 8 5



'

&

$

%

Example 3

fun f g = let val x = 3 in g 2 end

val x = 4

fun h y = x + y

val z = f h

Dan Grossman CSE341 Spring 2008, Lecture 8 6



'

&

$

%

Scope

A key language concept: how are user-defined things resolved?

We have seen that ML has lexically scoped variables?

Another (more-antiquated-for-variables, sometimes-useful) approach is

dynamic scope

Example of dynamic scope: Exception handlers (where does raise (in

Java throw) transfer control?)

Dan Grossman CSE341 Spring 2008, Lecture 8 7



'

&

$

%

Why lexical scope?

1. Functions can be reasoned about (defined, type-checked, etc.)

where defined

2. Function meaning not related to choice of variable names

3. “Closing over” local variables creates private data; function definer

knows function users cannot affect it

Example:

fun add_2x x = fn z => z + x + x

fun add_2x x = let val y = x + x in fn z => z + y end

Dan Grossman CSE341 Spring 2008, Lecture 8 8



'

&

$

%

Key idioms with closures

• Create similar functions

• Combine functions

• Pass functions with private data to iterators (map, fold, ...)

• Provide an ADT

• Partially apply functions (“currying”)

• As a callback without the “wrong side” specifying the

environment.

(Will go through these today and Friday. See lec8.sml for examples

for first three idioms.)

In all cases, a closure’s “private fields” (i.e., free variables) are

essential.

Dan Grossman CSE341 Spring 2008, Lecture 8 9



'

&

$

%

Why Google cares about functional iterators

Remember MapReduce? (fold is a slightly cleaner variant of reduce.)

Often the client of fold does not care what order the data is combined

• True for all 3 examples using fold in lec8.sml.

• Not true in general (e.g., is list sorted)

So what if we had huge arrays of data and 1000s of computers.

• Provide map for huge arrays of data; run in parallel

• Provide reduce for combining results; run in parallel then combine

results across computers

Example: How many web pages have the phrase “Converse hightops”?

Example: Is “hightop” or “high-top” more common on the Web?

Key separation: MapReduce is a sophisticated fault-tolerant distributed

system. Users (490H) just call map and reduce on some data.

Dan Grossman CSE341 Spring 2008, Lecture 8 10



'

&

$

%

Fault-Tolerance

At data-center scales, computers fail or become disconnected or start

running too slow very often.

• If 1 computer has a hardware crash once every year on average,

how long before 1 out of 10000 computers crash?

So part of MapReduce is redoing the computation parts that were

given to a computer that fails.

But when can you take a computation, run it more than once, and

know that’s the same as running it exactly once?

When you do not use mutation!

A “new” style of programming: Computation in terms of maps and

folds instead of sequences of assignment statements.

• Not new at all of course, just new to BusinessWeek. :-)

Dan Grossman CSE341 Spring 2008, Lecture 8 11


