
'

&

$

%

CSE 341:
Programming Languages

Dan Grossman

Spring 2008

Lecture 23— Multiple Inheritance, Interfaces, Mixins

Dan Grossman CSE341 Spring 2008, Lecture 23 1



'

&

$

%

Today

Have seen OO’s essence: inheritance, overriding, dynamic-dispatch.

What if we want these things from more than “exactly 1 superclass”?

• Multiple inheritance: allow > 1 superclasses

– Useful but has some problems (see C++)

• Java-style interfaces: allow > 1 types

– “Irrelevant” in a dynamically typed language, but fewer

problems

• Mixins: allow > 1 “sources of methods”

– Close to multiple inheritance; almost as useful with fewer (?)

problems

– In Ruby

Dan Grossman CSE341 Spring 2008, Lecture 23 2



'

&

$

%

Multiple Inheritance

If code reuse via inheritance is so useful, why not allow multiple

superclasses?

• Because it causes some semantic awkwardness and

implementation awkwardness (we’ll discuss only the former)

• (With static typing, there are some more issues)

Is it useful? Sure: A simple example is “3DColorPoint” assuming we

already have “3DPoint” and “ColorPoint”.

Naive view: Subclass has all fields and methods of all superclasses

Dan Grossman CSE341 Spring 2008, Lecture 23 3



'

&

$

%

Trees, dags, and diamonds

The “class hierarchy” is a (conceptual) graph with edges from

subclasses to superclasses.

Ambiguous phrase: subclass, let’s use immediate-subclass or

transitive-subclass when we need to be clear.

• With single inheritance, the class hierarchy is a tree.

• With multiple inheritance, the class hierarchy is a dag.

– Semantic problems arise from diamonds: Multiple ways to

show that class A is a transitive-subclass of some class B.

– If all classes are transitive-subclasses of something like Object,

then multiple inheritance always leads to diamonds.

Dan Grossman CSE341 Spring 2008, Lecture 23 4



'

&

$

%

Multiple Inheritance Semantic Problems

What if multiple superclasses define the same message m or field f?

• Classic example: Artists, Cowboys, and ArtistCowboys

Options for m:

• Reject subclass—too restrictive (especially due to diamonds)

• “Left-most superclass wins” (leads to silent weirdness and really

want per-method flexiblity)

• Require subclass to override m (can use directed resends)

Options for f : one copy or two copies?

C++ provides two forms of inheritance:

• One always makes two copies

• One makes one copy if fields were declared by same class

– Would not work well in Ruby?

Dan Grossman CSE341 Spring 2008, Lecture 23 5



'

&

$

%

Java-style interfaces

(Recall?) in Java, we can define interfaces and classes can implement

them.

• Interface describes methods and their types

interface Example {

void m1(int x, int y);

Foo m2(Example e, String s);

}

• Example is a type (can be used for a field, method argument,

local variable, etc.)

• If class C implements interface I, then instances of C can have type

I but C must define everything in I (directly or via inheritance).

• Given an expression of type I, it type-checks to send it any

message I promises.

Dan Grossman CSE341 Spring 2008, Lecture 23 6



'

&

$

%

Interfaces are a typing thing

In Java, you have 1 immediate-superclass and any number of

interfaces you implement.

Because interfaces provide no methods or fields (only types of

methods), no duplication problems result!

• No problem if I1 and I2 both “promise” some method m and C

implements I1 and I2.

But interfaces do not give us the power we want for making colored

3D points or artist-cowboys.

They’re totally irrelevant in a dynamically typed language like Ruby:

• We are already allowed to send any message to any object

• It is up to us to get it right (“interfaces” more in comments or

reflection, e.g., the methods method of Object)

Dan Grossman CSE341 Spring 2008, Lecture 23 7



'

&

$

%

Interfaces vs. Abstract Classes

If you had multiple inheritance, you could replace interfaces with

abstract classes containing only abstract methods.

• Called pure virtual methods in C++

• But the whole point is multiple inheritance is more powerful

because it doesn’t require n − 1 superclasses to have only

abstract methods.

Dan Grossman CSE341 Spring 2008, Lecture 23 8



'

&

$

%

Mixins

A mixin is a collection of methods

• no fields, constructors, instances, etc.

Languages with mixins (e.g., Ruby) typically allow a class to have 1

superclass but any number of mixins.

Bad news: Less powerful than multiple inheritance; have to decide

“upfront” what is a class and what is a mixin.

Good news: Clear semantics on methods/fields and works great for

certain idioms.

Dan Grossman CSE341 Spring 2008, Lecture 23 9



'

&

$

%

Ruby mixin basics

A module’s instance methods are mixed into a class by including the

module in the class definition.

Method-lookup rules: First class’s methods, then its mixins’ methods

(later includes shadow), then immediate-superclass, then

immediate-superclass’s mixins, ...

Field rules: It is all one object.

Dan Grossman CSE341 Spring 2008, Lecture 23 10



'

&

$

%

What mixins are good for

We could make Color a mixin and then use it for coloring 2D and 3D

points.

• Works fine but often bad style to have mixin methods define fields

(could conflict with other fields)

For artist-cowboys, what should the mixin be?

But mixins are extremeley elegant for letting classes “get a bunch of

methods while defining only a few”.

• All thanks to late-binding!

• Cool examples in Ruby library: Comparable and Enumerable

Dan Grossman CSE341 Spring 2008, Lecture 23 11


