
'

&

$

%

CSE 341:
Programming Languages

Dan Grossman

Spring 2008

Lecture 18— Static vs. dynamic typing

Dan Grossman CSE341 Spring 2008, Lecture 18 1

'

&

$

%

Today

Consider one of the biggest differences between Scheme and ML:

• ML is statically typed (many errors when compiled)

• Scheme is dynamically typed (many errors when run)

More generally:

• Why is static typing good/bad?

• How do you judge a type system?

Dan Grossman CSE341 Spring 2008, Lecture 18 2

'

&

$

%

Strong typing vs. Weak typing

In languages with weak typing, there exist programs that

implementations must accept at compile-time, but at run-time the

program can do anything, including blow-up your computer.

• Examples: C, C++

Old wisdom: Strong types for weak minds

New wisdom: Weak typing endangers society & costs > $1e10/year

Why weak typing? For efficiency and low-level implementation

(important for small parts of low-level systems)

My view: Programming is hard enough without

implementation-defined behavior. This has little to do with types:

• ML, Scheme, Java, Ruby all “strongly typed” in this sense

Dan Grossman CSE341 Spring 2008, Lecture 18 3

'

&

$

%

Static Typing vs. Dynamic Typing

In ML and Scheme "hi" - "mom" or (- "hi" "mom") are errors.

• In ML it’s “at compile-time” (static)

• In Scheme it’s “at run-time” (dynamic)

(define (f) (- "hi" "mom")) fine until you call it, but never

type-checks in ML.

This also never type-checks in ML, but may never fail if called

appropriately :

(define (f g x y) fun f (g,x,y) =

(if (g x) if g x

(string-length y) then String.size y

(+ y 1))) else y + 1 (* type-error! *)

Dan Grossman CSE341 Spring 2008, Lecture 18 4

'

&

$

%

Basic benefits/limitations

Indisputable facts:

• A language with static checks catches certain bugs without testing

(earlier in the software-development cycle)

• It’s impossible to catch exactly the buggy programs at

compile-time

– Impossible (undecidable) to know what code will execute in

what environments, so may give false positives

– Impossible to know exactly what types a function argument

might have without running the program, so may give false

positives

– Algorithm bugs remain (e.g., using + where you meant -)

Dan Grossman CSE341 Spring 2008, Lecture 18 5

'

&

$

%

Static Checking

Key questions for a compile-time check (e.g., ML type-checking):

1. What is it checking? Examples (and not):

• Yes: Primitives (e.g., +) aren’t applied to inappropriate values

• Yes: Module interfaces are respected

(e.g., don’t use private functions)

• Yes: Patterns are not redundant

• No: hd is never applied to the empty list

• No: Array indices are in bounds

Knowing what is caught for me affects how I program.

2. Is it sound? (Does it ever accept a program that at run-time does

what we claimed it could not? “false negative”)

3. Is it complete? (Does it ever reject a program that could not do

the “bad thing” at run-time? “false positive”)

Dan Grossman CSE341 Spring 2008, Lecture 18 6

'

&

$

%

Unfortunately...

All non-trivial static analyses are either unsound or incomplete.

• Direct corollary to CSE322 concept of undecidability

Good design leads to “useful subsets” of all programs, typically (but

not always) ensuring soundness and sacrificing completeness.

• Forbid all programs that do some “bad” things

(like pass a function to +)

• Also forbid some programs that don’t do the bad things because

we can’t tell

To judge a type system:

• Is it sound (or is it “broken”)?

• Is it “expressive enough” (is the incompleteness palatable)?

Dan Grossman CSE341 Spring 2008, Lecture 18 7

'

&

$

%

A Question of Eagerness

Again, every static type system provides certain guarantees. Some

things we might want to check statically (soundly but incompletely),

but ML and Java’s type system don’t: no null-pointer exceptions, no

division-by-zero, no data races, ...

There is also more than “compile-time” or “run-time”.

Consider 3 / 0.

• Compile-time: reject if code is “reachable” (maybe dead branch)

• Link-time: reject if code is “reachable” (maybe unused function)

• Run-time: reject if code executes (maybe branch never taken)

• Even later: maybe delay error until “bad number” is used to index

into an array or something.

– Crazy? Floating-point allows 3.0 / 0.0; gives you +inf.0.

Dan Grossman CSE341 Spring 2008, Lecture 18 8

'

&

$

%

Exploring Some Arguments

1a. Dynamic typing is more convenient

(define (f x) (if (> x 0) (* 2 x) #f))

(let ([ans (f y)]) (if ans e1 e2))

datatype intOrBool = Int of int | Bool of bool

fun f x = if x > 0 then Int (2*x) else Bool false

case f y of

Int ans => e1

| Bool _ => e2

Just return what you want; no need to define datatypes (use

the-one-big-datatype)

Dan Grossman CSE341 Spring 2008, Lecture 18 9

'

&

$

%

Exploring Some Arguments

1b. Static typing is more convenient

(define (cube x) (if (not (number? x))

(error "bad arguments")

(* x x x)))

(cube 7)

fun cube x = x * x * x

cube 7

With dynamic-typing, assuming things about arguments can lead to

errors far from the logical mistake

(“expected foo got bar” deep in some library)

Dan Grossman CSE341 Spring 2008, Lecture 18 10

'

&

$

%

Exploring Some Arguments

2. Static typing prevents / doesn’t prevent useful programs

• Overly restrictive type systems certainly can (e.g., without

polymorphism a new list library for each list-element type)

• datatype gives you as much or as little flexibility as you want –

can embed Scheme in ML:

datatype SchemeVal = Int of int | String of string

| Fun of SchemeVal -> SchemeVal

| Cons of SchemeVal * SchemeVal

if e1

then Fun (fn x => case x of Int i => Int (i * i * i))

else Cons (Int 7, String "hi")

Viewed this way, Scheme is “unityped” with “implicit

tag-checking” which is “just” a matter of convenience.

Dan Grossman CSE341 Spring 2008, Lecture 18 11

'

&

$

%

Exploring Some Arguments

3. Static/dynamic typing better for code evolution

Change:

fun f x = x * 2 (define (f x) (* x 2))

to:

datatype t = I of int

| S of string

fun f x = (define (f x)

case x of (if (number? x)

I i => I (i * 2) (* x 2)

| S s => S (s ^ s) (string-append x x)))

• Good example for dynamic: In ML, all callers must change

• But: If we change the return type of f, ML type-checker will give

us a full to-do list of what to change.

Dan Grossman CSE341 Spring 2008, Lecture 18 12

'

&

$

%

Another evolution example

Suppose I add a new constructor to an ML datatype

(like a Mult for arithmetic expressions)

• Most existing patterns over the type will now give a warning

– Good reason not to use _ patterns

• But if I “know” some expressions will not be multiplies, then these

warnings are false positives

Dan Grossman CSE341 Spring 2008, Lecture 18 13

'

&

$

%

Exploring Some Arguments

4. Types make code reuse harder/easier

• Dynamic:

– Sound types means you’ll always restrict how code is used in

some way that you need not

– By using cons cells for everything, you can reuse lots of libraries

• Static:

– Using separate types catches bugs and enforces abstractions

(don’t accidentally confuse two different uses of cons cells)

– We can provide enough flexibility in practice (e.g., with

polymorphism)

Design issue: Whether to build a new data structure or encode with

existing ones (for libraries) is an important consideration

Dan Grossman CSE341 Spring 2008, Lecture 18 14

'

&

$

%

Exploring Some Arguments

5. Types make programs faster/slower.

• Dynamic: Don’t have to code around the type system or duplicate

code; optimizer can remove provably unnecessary tag-tests

• Static: Programmer controls where tag-tests occur (in patterns)

and knows that compiler need not have unnecessary tests (is

argument to + a number).

Dan Grossman CSE341 Spring 2008, Lecture 18 15

'

&

$

%

Summary

There are real trade-offs here; you must know them.

We can have rational discussions about them, informed by facts.

Almost every language checks some things statically and other things

dynamically.

• It’s really a question of what you check statically, but we have an

informal sense of what type-checking “normally checks for”

Dan Grossman CSE341 Spring 2008, Lecture 18 16

