
CSE 341, Spring 2008, Assignment 2
Due: Friday 18 April, 8:00AM

Last updated: April 8

You will write 11 SML functions (not counting local helper functions), 4 having to do with “name substitu-
tions” and 7 having to do with a made-up solitaire card game.

Your solutions must use pattern-matching. You may not use the functions null, hd, or tl, nor may you
use anything containing a # character. You may not use mutation. The sample solution is about 135 lines,
including all the code provided to you.

Download hw2provided.sml from the course website.

The provided code defines several types for you. You do not need to define any additional types.

Do not miss the “Important Caveat” after the “Type Summary.”

1. This problem involves using first-name substitutions to come up with alternate names. For example,
Daniel Joseph Grossman could also be Dan Joseph Grossman or Danny Joseph Grossman. Only part
(d) is specifically about this, but the other problems are helpful.

(a) Write a function all_except_option, which takes a string and a string list. Return NONE
if the string is not in the list, else return SOME lst where lst is like the argument list except the
string is not in it. You may assume the string is in the list at most once. Use same_string,
provided to you, to compare strings. Sample solution is 8 lines.

(b) Write a function get_substitutions1, which takes a string list list (a list of list of strings,
the substitutions) and a string s and returns a string list. The result has all the strings that
are in some list in substitutions that also has s, but s itself should not be in the result. Example:

get_substitutions1([["Dan","Daniel"],["Matthew","Matt"],["Danny","Dan","D"]],
"Dan")

(* answer: ["Daniel","Danny","D"] *)

Assume each list in substitutions has no repeats. The result will have repeats if s and another
string are both in more than one list in substitutions. Example:

get_substitutions1([["Dan","Daniel"],["Jeff","Jeffrey"],["Geoff","Jeff","Jeffrey"]],
"Jeff")

(* answer: ["Jeffrey","Geoff","Jeffrey"] *)

Use part (a) and ML’s list-append (@) but no other helper functions. Sample solution is 6 lines.
(c) Write a function get_substitutions2, which behaves like get_substitutions1 except it uses a

tail-recursive local helper function.
(d) Write a function similar_names, which takes a string list list of substitutions (as in parts

(b) and (c)) and a full name of type {first:string,middle:string,last:string} and returns
a list of full names (of type {first:string,middle:string,last:string} list). The result is
all the full names you can produce by substituting for the first name (and only the first name)
using substitutions and parts (b) or (c). The answer should always begin with the original name
(then have 0 or more other names). Example:

similar_names([["Dan","Daniel"],["Matthew","Matt"],["Danny","Dan","D"]],
{first="Dan", middle="J", last="Grossman"})

(* answer: [{first="Dan", middle="J", last="Grossman"},
{first="Daniel", middle="J", last="Grossman"},
{first="Danny", middle="J", last="Grossman"},
{first="D", middle="J", last="Grossman"}] *)

Hint: Use a local helper function. Sample solution is 9 lines.

1



2. This problem involves a solitaire card game made up (just now) by your instructor. You will write a
program that tracks the progress of a game; writing a game player is a challenge problem. You can do
parts (a)–(e) before understanding the game if you wish.

A game is played with a card-list and a goal. The player has a list of held-cards, initially empty. The
player makes a move by either drawing, which means removing the first card in the card-list from the
card-list and adding it to the held-cards, or discarding, which means choosing one of the held-cards to
remove. The game ends either when the player chooses to make no more moves or when the sum of
the values of the held-cards is greater than the goal.

The objective is to end the game with a low score (0 is best). Scoring works as follows: Let sum be
the sum of the values of the held-cards. If sum is greater than goal, the preliminary score is three
times sum− goal, else the preliminary score is goal − sum. The score is the preliminary score unless
all the held-cards are the same color, in which case the score is the preliminary score divided by 2 (and
rounded down as usual with integer division; use ML’s div operator).

(a) Write a function card_color, which takes a card and returns its color (spades and clubs are black,
diamonds and hearts are red). Note: One case-expression is enough.

(b) Write a function card_value, which takes a card and returns its value (numbered cards have their
number as the value, aces are 11, everything else is 10). Note: One case-expression is enough.

(c) Write a function remove_card, which takes a list of cards lst, a card c, and an exception e. It
returns a list that has all the elements of lst except c. If c is in the list more than once, remove
only the first one. If c is not in the list, raise the exception e. You can compare cards with =.

(d) Write a function all_same_color, which takes a list of cards and returns true if all the cards in
the list are the same color. Hint: An elegant solution is very similar to one of the functions we
looked at in lecture 6.

(e) Write a function sum_cards, which takes a list of cards and returns the sum of their values. Use
a locally defined helper function that is tail recursive.

(f) Write a function score, which takes a card list (the held-cards) and an int (the goal) and
computes the score as described above.

(g) Write a function officiate, which “runs a game.” It takes a card list (the card-list) a
move list (what the player “does” at each point), and an int (the goal) and returns the score
at the end of the game after processing (some or all of) the moves in the move list in order. Use a
locally defined recursive helper function that takes several arguments that together represent the
current state of the game. As described above:

• The game starts with the held-cards being the empty list.
• The game ends if there are no more moves. (The player chose to stop since the move list is

empty.)
• If the player discards some card c, play continues (i.e., make a recursive call) with the held-

cards not having c and the card-list unchanged. If c is not in the held-cards, raise the
IllegalMove exception.

• If the player draws and the card-list is empty, the game is over. Else if drawing causes the
sum of the held-cards to exceed the goal, the game is over. Else play continues with a larger
held-cards and a smaller card-list. Sample solution is under 20 lines.

2



3. Challenge Problems:

(a) Write score_challenge and officiate_challenge to be like their non-challenge counterparts
except each ace can have a value of 1 or 11 and score_challenge should always return the least
(i.e., best) possible score. Hint: This is easier than you might think.

(b) Write careful_player, which takes a card-list and a goal and returns a move-list such that calling
officiate with the card-list, the goal, and the move-list has this behavior:

• The value of the held cards never exceeds the goal.
• A card is drawn whenever the goal is more than 10 greater than the value of the held cards.
• If a score of 0 is reached, there must be no more moves.
• If it is possible to discard one card, then draw one card to produce a score of 0, then this

must be done. (Note careful_player will have to look ahead to the next card, which in
many card games is considered “cheating.”)

Type Summary
Evaluating a correct homework solution should generate these bindings, in addition to the bindings from the
code provided to you — but see the important caveat that follows!

val all_except_option = fn : string * string list -> string list option
val get_substitutions1 = fn : string list list * string -> string list
val get_substitutions2 = fn : string list list * string -> string list
val similar_names = fn : string list list * {first:string, last:string, middle:string}

-> {first:string, last:string, middle:string} list
val card_color = fn : card -> color
val card_value = fn : card -> int
val remove_card = fn : card list * card * exn -> card list
val all_same_color = fn : card list -> bool
val sum_cards = fn : card list -> int
val score = fn : card list * int -> int
val officiate = fn : card list * move list * int -> int

Important Caveat: The read-eval-print loop may give your functions equivalent types or more general
types. This is fine. In the sample solution, the bindings for problems 1d, 2a, 2b, 2c, and 2d were
all more general. For example, card_value had type suit * ’a -> color and remove_card had type
’’a list * ’’a * exn -> ’’a list. They are more general, which means there is a way to replace the
type variables (’a or ’’a) with types to get the bindings listed above. As for equivalent types, because
type card = suit*rank, types like card -> int and suit*rank->int are equivalent. They are the same
type, and the read-eval-print loop simply chooses one way of printing the type. Also, the order of fields in
records never matters.
If you write down explicit argument types for functions, you will probably not see equivalent or more-general
types, but the sample solution takes the common ML approach of omitting all explicit types.

Of course, generating these bindings does not guarantee that your solutions are correct. Test your functions.

Assessment
Your solutions should be correct, in good style (including indentation and line breaks), and using features
we have used in class.

Turn-in Instructions

• Put all your solutions in one file, lastname hw2.sml, where lastname is replaced with your last name.

• The first line of your .sml file should be an ML comment with your name and the phrase homework 2.

• Go to https://catalysttools.washington.edu/collectit/dropbox/djg7/2125 (link available from
the course website), follow the “Homework 2” link, and upload your file.

3


