The CLP Operational Model

Adapted from the model presented in Kim Marriott and Peter Stuckey, *Programming with Constraints: An Introduction*
Terminology

A *user-defined constraint* is of the form $p(t_1, \ldots, t_n)$ where p is an n-ary predicate and t_1, \ldots, t_n are expressions from the constraint domain.

A *literal* is either a primitive constraint or a user-defined constraint.

A *goal* is a sequence of literals L_1, \ldots, L_m. If $m = 0$ the goal is *empty* and is written \square.

A *rule* R is of the form $A :- B$ where A is a user-defined constraint and B is a goal. A is the *head* of R and B is the body.

A *fact* is a rule with the empty goal as its body: $A :- \square$ and is simply written as A.

A *program* is a sequence of rules.
Rewritings

Let goal G be of the form

$L_1, \ldots, L_{i-1}, L_i, L_{i+1}, \ldots, L_m$

where L_i is a user-defined constraint $p(t_1, \ldots, t_n)$.

Let rule R be of the form $p(t_1, \ldots, t_n) :- B$.

Let ρ be a renaming (i.e. a mapping that replaces variables with new ones).

A rewriting of G at L_i by R using ρ is the new goal formed from G by replacing L_i with

$t_1 = \rho(s_1), \ldots, t_n = \rho(s_n), \rho(B)$

where ρ is chosen so that the variables in $\rho(R)$ do not appear in G.
Derivation Steps

A state is a pair \(\langle G \mid C \rangle \) where \(G \) is a goal and \(C \) is a constraint. \(C \) is called the constraint store.

A derivation step from \(\langle G_1 \mid C_1 \rangle \) to \(\langle G_2 \mid C_2 \rangle \) is written:

\[
\langle G_1 \mid C_1 \rangle \Rightarrow \langle G_2 \mid C_2 \rangle
\]

It is defined as follows.

Let \(G_1 \) be the sequence of literals \(L_1, L_2, \ldots, L_m \).

Case 1: \(L_1 \) is a primitive constraint. Then \(C_2 \) is \(C_1 \land L_1 \). If the constraint solver determines that \(C_2 \) is unsatisfiable, then \(G_2 \) is the empty goal; otherwise \(G_2 \) is \(L_2, \ldots, L_m \).

Case 2: \(L_1 \) is a user-defined constraint. Let \(L_1 \) have the form \(p(t_1, \ldots, t_n) \). Select a rule \(R \) in program whose head is a literal \(p(s_1, \ldots, s_n) \). Then \(C_2 \) is \(C_1 \) and \(G_2 \) is found by a rewriting of \(G \) at \(L_1 \) using \(R \). If there is no rule to use for the rewriting, then \(C_2 \) is false and \(G_2 \) is the empty goal.
Derivations

A *derivation* for a goal G is a sequence of derivation steps starting with $\langle G \mid true \rangle$.

A derivation can continue until the goal becomes empty. A derivation that can no longer continue can be either successful or failed.

A derivation is successful if the last state is $\langle \Box \mid C_n \rangle$, and the constraint solver doesn’t determine that constraint C_n is unsatisfiable. The constraint that is the result of simplifying C_n with respect to the variables in G is an *answer* to G.

A derivation is failed if the last state is $\langle \Box \mid C_n \rangle$, and the constraint solver determines that constraint C_n is unsatisfiable.
Example Derivation

CLP(\(\mathcal{R}\)) program:

\[
\text{cf}(C,F) :- \quad \text{F}=1.8\times C+32. \quad / * \text{ rule R1 } */
\]
\[
\text{double}(X,Y) := \quad \text{Y}=2\times X. \quad / * \text{ rule R2 } */
\]

Consider the goal \(\text{cf}(A,B), \quad \text{double}(A,200)\).

\[\langle \text{cf}(A, B), \text{double}(A, 200) | \text{true} \rangle\]

\[
\Rightarrow
\]

using R1:

\[\langle A = C, B = F, F = 1.8 \times C + 32, \quad \text{double}(A, 200) | \text{true} \rangle\]
\[
\Rightarrow \\
\langle B = F, F = 1.8 \times C + 32, double(A, 200) \mid A = C \rangle
\]

\[
\Rightarrow \\
\langle F = 1.8 \times C + 32, double(A, 200) \mid A = C, B = F \rangle
\]

\[
\Rightarrow \\
\langle double(A, 200) \mid A = C, B = F, F = 1.8 \times C + 32 \rangle
\]

\[
\Rightarrow \\
\text{using R2:} \\
\langle A = X, 200 = Y, Y = 2 \times X \mid A = C, B = F, F = 1.8 \times C + 32 \rangle
\]
\[\langle 200 = Y, Y = 2 \times X \mid A = C, B = F, F = 1.8 \times C + 32, A = X \rangle \]

\[\Rightarrow \]

\[\langle Y = 2 \times X \mid A = C, B = F, F = 1.8 \times C + 32, A = X, 200 = Y \rangle, \]

\[\Rightarrow \]

\[\langle \Box \mid A = C, B = F, F = 1.8 \times C + 32, A = X, 200 = Y, Y = 2 \times X \rangle \]

Simplifying with respect to the variables in \(G_0 \) (namely \(A, B \)) we get the answer \(A = 100, B = 212 \).

This is a successful derivation.
Derivation Trees

There may be more than one derivation for a goal. The derivation tree contains all the derivations for a given goal G. The CLP system will in effect incrementally construct the derivation tree as it searches for an answer.

Definition: a *derivation tree* for a goal G and program P is a tree with states as nodes. The root is $\langle G \mid \text{true} \rangle$. The children of each state $\langle G_i \mid C_i \rangle$ are the states that can be reached in a single derivation step. A state with two or more children is a *choicepoint*.

CLP(R) evaluates a goal by performing a depth-first, left-to-right traversal of the goal’s derivation tree. Whenever a success state is encountered the system returns the corresponding answer. The user can accept the answer, or reject it (so that traversal continues).
Simplified Derivation Trees

We can produce a simplified derivation tree by omitting uninteresting steps and simplifying the resulting constraints. A simplified derivation for a goal G includes the first and last states in the full derivation, and every state for which the first literal in the goal is a user-defined constraint.

Simplified derivation tree for the previous example:

\[
\langle cf(A, B), \text{double}(A, 200) \mid true \rangle \Rightarrow \langle \text{double}(A, 200) \mid B = 1.8 \times A + 32 \rangle \Rightarrow \langle \Box \mid A = 100, B = 212 \rangle
\]