The CLP Operational Model

Adapted from the model presented in Kim Marriott and Peter Stuckey, Programming with Constraints: An Introduction

Terminology

A user-defined constraint is of the form \(p(t_1, \ldots, t_n) \) where \(p \) is an \(n \)-ary predicate and \(t_1, \ldots, t_n \) are expressions from the constraint domain.

A literal is either a primitive constraint or a user-defined constraint.

A goal is a sequence of literals \(L_1, \ldots, L_m \). If \(m = 0 \) the goal is empty and is written \(\square \).

A rule \(R \) is of the form \(A \leftarrow B \) where \(A \) is a user-defined constraint and \(B \) is a goal. \(A \) is the head of \(R \) and \(B \) is the body.

A fact is a rule with the empty goal as its body: \(A \leftarrow \square \) and is simply written as \(A \).

A program is a sequence of rules.

Rewritings

Let goal \(G \) be of the form

\[L_1, \ldots, L_{i-1}, L_i, L_{i+1}, \ldots, L_m \]

where \(L_i \) is a user-defined constraint \(p(t_1, \ldots, t_n) \).

Let rule \(R \) be of the form \(p(t_1, \ldots, t_n) \leftarrow B \).

Let \(\rho \) be a renaming (i.e. a mapping that replaces variables with new ones).

A rewriting of \(G \) at \(L_i \) by \(R \) using \(\rho \) is the new goal formed from \(G \) by replacing \(L_i \) with

\[t_1 = \rho(s_1), \ldots, t_n = \rho(s_n), \rho(B) \]

where \(\rho \) is chosen so that the variables in \(\rho(R) \) do not appear in \(G \).

Derivation Steps

A state is a pair \(\langle G | C \rangle \) where \(G \) is a goal and \(C \) is a constraint. \(C \) is called the constraint store.

A derivation step from \(\langle G_1 | C_1 \rangle \) to \(\langle G_2 | C_2 \rangle \) is written:

\[\langle G_1 | C_1 \rangle \Rightarrow \langle G_2 | C_2 \rangle \]

It is defined as follows.

Let \(G_1 \) be the sequence of literals \(L_1, L_2, \ldots, L_m \).

Case 1: \(L_1 \) is a primitive constraint. Then \(C_2 \) is \(C_1 \land L_1 \). If the constraint solver determines that \(C_2 \) is unsatisfiable, then \(G_2 \) is the empty goal; otherwise \(G_2 \) is \(L_2, \ldots, L_m \).

Case 2: \(L_1 \) is a user-defined constraint. Let \(L_1 \) have the form \(p(t_1, \ldots, t_n) \). Select a rule \(R \) in program whose head is a literal \(p(s_1, \ldots, s_n) \). Then \(C_2 \) is \(C_1 \) and \(G_2 \) is found by a rewriting of \(G \) at \(L_1 \) using \(R \). If there is no rule to use for the rewriting, then \(C_2 \) is false and \(G_2 \) is the empty goal.
Derivations

A *derivation* for a goal G is a sequence of derivation steps starting with $\langle G \mid \text{true} \rangle$.

A derivation can continue until the goal becomes empty. A derivation that can no longer continue can be either successful or failed.

A derivation is successful if the last state is $\langle \Box \mid C_n \rangle$, and the constraint solver doesn’t determine that constraint C_n is unsatisfiable. The constraint that is the result of simplifying C_n with respect to the variables in G is an *answer* to G.

A derivation is failed if the last state is $\langle \Box \mid C_n \rangle$, and the constraint solver determines that constraint C_n is unsatisfiable.

Example Derivation

CLP(\text{R}) program:

\[
\text{cf}(C,F) := F=1.8\times C + 32. \quad /* \text{rule R1} */ \\
\text{double}(X,Y) := Y=2\times X. \quad /* \text{rule R2} */
\]

Consider the goal \text{cf}(A,B), \text{double}(A,200).

\[
\langle \text{cf}(A,B), \text{double}(A,200) \mid \text{true} \rangle
\]

\[\Rightarrow \]

using R1:

\[
\langle A = C, B = F, F = 1.8 \times C + 32, \text{double}(A,200) \mid \text{true} \rangle
\]

\[\Rightarrow \]

\[
\langle 200 = Y, Y = 2 \times X \mid A = C, B = F, F = 1.8 \times C + 32, A = X \rangle
\]

\[\Rightarrow \]

\[
\langle Y = 2 \times X \mid A = C, B = F, F = 1.8 \times C + 32, A = X, 200 = Y \rangle
\]

\[\Rightarrow \]

\[
\langle \Box \mid A = C, B = F, F = 1.8 \times C + 32, A = X, 200 = Y, Y = 2 \times X \rangle
\]

Simplifying with respect to the variables in G_0 (namely A, B) we get the answer $A = 100, B = 212$.

This is a successful derivation.
Derivation Trees

There may be more than one derivation for a goal. The derivation tree contains all the derivations for a given goal G. The CLP system will in effect incrementally construct the derivation tree as it searches for an answer.

Definition: a derivation tree for a goal G and program P is a tree with states as nodes. The root is $\langle G \mid \text{true} \rangle$. The children of each state $\langle G_i \mid C_i \rangle$ are the states that can be reached in a single derivation step. A state with two or more children is a choicepoint.

CLP(R) evaluates a goal by performing a depth-first, left-to-right traversal of the goal’s derivation tree. Whenever a success state is encountered the system returns the corresponding answer. The user can accept the answer, or reject it (so that traversal continues).

Simplified Derivation Trees

We can produce a simplified derivation tree by omitting uninteresting steps and simplifying the resulting constraints. A simplified derivation for a goal G includes the first and last states in the full derivation, and every state for which the first literal in the goal is a user-defined constraint.

Simplified derivation tree for the previous example:

$\langle cf(A, B), \text{double}(A, 200) \mid \text{true} \rangle$

\Rightarrow

$\langle \text{double}(A, 200) \mid B = 1.8 \ast A + 32 \rangle$

\Rightarrow

$\langle \Box \mid A = 100, B = 212 \rangle$