
CSE 341, Autumn 2008, Assignment
Haskell Warmup

Due: Monday September 29, 10:00pm

12 points total (2 points each for Questions 1–3; 3 points each for Questions 4 and 5)

You can use up to 2 late days for this assignment. (The reason for this is so that we can post sample solutions
within a reasonable time — if we wait for 6 days that’s getting long.)

For each top-level Haskell function you define, include a type declaration. For example, your sphere_volume
function for Question 1 should start with:

sphere_volume:: Double->Double

1. Write a function sphere_volume that takes a Double representing the radius of a sphere, and that
returns the Double that is the volume of the sphere. Remember to include the type declaration.
(Double is a built-in Haskell type representing a double-precision floating point number.) If you write
this function without a type declaration and let Haskell infer the type, it will actually come up with a
more general type – but we’re going to ease into Haskell’s type system and just declare the function
to take a Double and return a Double. Hint: use the built-in constant pi.

2. Write a function cone_volume that takes two numbers (both Double) representing the height and
radius of the base of a cone, and that returns the volume of the cone. (To be precise, since in Haskell
all functions are curried, cone_volume doesn’t actually take two parameters; instead, it takes one
parameter and returns a function that takes another parameter, which finally returns the volume.)
Again, Remember to include the type declaration.

3. Write a recursive function cubes that takes a list of integers (type Int), and returns a list of the cubes of
those integers. For example, cubes [1,3,10] should evaluate to [1,27,1000], while cubes [] should
evaluate to []. Also try your function on an infinite list, for example cubes [1..] or cubes [1,3..].

4. Write another version of the cubes function, called map_cubes, that uses the built-in map function in
Haskell. map_cubes should not be recursive. Don’t define a named helper function – use an anonymous
function.

5. Write a function duplicate that takes a list s and an integer n, and returns a list with n copies of s
concatenated together. The list s can contain any other type. If n is negative, give an error message.
Here are some examples:

duplicate [10, 20, 30] 2 => [10, 20, 30, 10, 20, 30]
duplicate [10, 20, 30] 0 => []
duplicate [True] 4 => [True, True, True, True]
duplicate "No!" 5 => "No!No!No!No!No!"
duplicate "No!" (-5) => Exception: negative argument to duplicate

Hints: duplicate has a polymorphic type:
duplicate :: [a] -> Int -> [a]

See the rec_factorial function in the lecture notes for an example of checking for a bad input
parameter value.

Turnin: Turn in your Haskell program and a script showing it running on some well-chosen test cases. Your
program should be tastefully commented (i.e. put in a comment before each function definition saying what
it does).

1


