
CSE 341:
Programming Languages

Spring 2007

Lecture 6 — More on Tail Recursion & Accumulators

CSE 341 Spring 2007, Lecture 6 1

More on Bindings & Immutability

What does this do?

val x = 1;

val x = 2;

First binding to x is hidden by 2nd, but not overwritten, changed or

erased.

You could still see it if you wanted, e.g.:

val x = 1;

fun oldx() = x;

val x = 2;

oldx();

Bindings are immutable. (Deleting inaccessible ones, e.g. the 1st x in

the 1st example, is a performance issue, not a correctness issue.)

CSE 341 Spring 2007, Lecture 6 2

More...

A more subtle example:

val x = [3];

val y = 2 :: x;

val z = 1 :: y;

(* What’s z? *)

val x = [42];

(* What’s z now? *)

Or this:

val x = [1,2,3,4,...,999];

val y = 42 :: tl(x);

Did that allocate 1000 mem cells, or 2000?

CSE 341 Spring 2007, Lecture 6 3

Implementing lists

Want: null, hd, tl, ::

How: Arrays? Pointers? Other?

Costs: memory, time, code

CSE 341 Spring 2007, Lecture 6 4

Using Lists (Java)

Consider a linked list of integers, implemented in Java.

• What data structure (if you build it from scratch)?

How would you implement functions for:

• Test if a list is empty? (How fast?)

• Extract the hd of a lst? (How fast?)

• Extract the tl of a lst? (How fast?)

• Implement ::? (How fast? Semantics?)

• Find the last element of a list? (How fast? How much memory?)

• Find the length of a list? (How fast? How much memory?)

CSE 341 Spring 2007, Lecture 6 5

Implementing lists

Want: null, hd, tl, ::

How: Arrays? Pointers? Other?

Costs: memory, time, code

 -

1

2

3

[1,2,3]

CSE 341 Spring 2007, Lecture 6 6

Using Lists (ML)

Consider

fun len [] = 0

| len (x::xs) = 1 + len xs;

val theLength = len [1,2,3,4,5];

Q: How do you implement function call?

A: “Activation Records” and a “Call Stack”

CSE 341 Spring 2007, Lecture 6 7

Activation Records

What:

• Info about each activation of each procedure

• Dynamically created on call, destroyed (usually) on return

• Values of local variables

• Where was I called from/Where do I return to?

• (Housekeeping info: save state, registers, temp variables, partially

evaluated exprs, etc. across function calls)

CSE 341 Spring 2007, Lecture 6 8

Activation Records (cont.)

Why:

• Esp. with recursion, there may be many simultaneous activations

of a given procedure, each with different values for local vars,

different return addresses, etc.

• The AR is a simple implementation trick to keep it all straight

Downsides:

• The main source of “function call overhead”, both space & time.

CSE 341 Spring 2007, Lecture 6 9

 -

1

2

3

-

1 + ?

1 + ?

1 + ?

0

0

1

2

3
len([1,2,3])

main

len

len

len

len

fun len [] = 0
 | len (x::xs) = 1 + len xs;

val theLength = len [1,2,3];

AR

Ca
ll S

ta
ck

CSE 341 Spring 2007, Lecture 6 10

Implementing calls

Consider

fun len [] = 0

| len (x::xs) = 1 + len xs;

val theLength = len [1,2,3,4,5];

Compare:

fun last [x] = x

| last(x::xs) = last xs;

val theLast = last [1,2,3,4,5];

CSE 341 Spring 2007, Lecture 6 11

Tail calls
A call f(x) is called a tail call if it appears at the “tail end” of g, and

the value of f(x) is returned as the value of g without change.

Why care? Because they can be optimized! The usual call mechanism:

• Suspend activation of g

• Build AR for f, then run f

• Destroy AR for f, passing value of f(x) back to g

• Destroy AR for g, passing value of g(-) = f(x) back to g’s caller

Can be streamlined to:

• Reuse g’s AR for f

• Don’t “call” f, just jump to start of its code

• When f returns, return its value directly g’s caller

A key special case: direct tail-recursion turns into a loop!

CSE 341 Spring 2007, Lecture 6 12

Accumulators: can turn non-tail calls into tail calls

fun len [] = 0

| len (x::xs) = 1 + len xs;

Becomes:

fun len2 lst =

let lenaux([], acc) = acc

| lenaux(x::xs,acc) = lenaux(xs, acc+1);

in

lenaux(lst,0)

end;

The standard trick: Do ops on way in, not way out. Instead of operating

on recursive result, move operation into the recursive call.

CSE 341 Spring 2007, Lecture 6 13

Tail calls: definition

If the result of f(x) is the result of the enclosing function body, then

f(x) is a tail call.

More precisely, a tail call is a call in tail position:

• In fun f(x) = e, e is in tail position.

• If if e1 then e2 else e3 is in tail position, then e2 and e3 are

in tail position (not e1). (Similar for case).

• If let b1 ... bn in e end is in tail position, then e is in tail

position (not any binding expressions).

• Function arguments are not in tail position.

• ...

CSE 341 Spring 2007, Lecture 6 14

