CSE 341.
Programming Languages

Spring 2007
Lecture 6 — More on Tail Recursion & Accumulators

CSE 341 Spring 2007, Lecture 6

More on Bindings & Immutability

What does this do?

val x = 1;

val x = 2;

First binding to x is hidden by 2nd, but not overwritten, changed or
erased.

You could still see it if you wanted, e.g.:

val x = 1;

fun oldx() = x;
val x = 2;
0ldx();

Bindings are immutable. (Deleting inaccessible ones, e.g. the 1st x in

the 1st example, is a performance issue, not a correctness issue.)

CSE 341 Spring 2007, Lecture 6

More...

A more subtle example:

val x = [3];
val y = 2 :: X;
val z = 1 :: vy,
(x What’s z? *)
val x = [42];

(x What’s z now? *)
Or this:

val x [1,2,3,4,...,999];
val y = 42 :: t1(x);

Did that allocate 1000 mem cells, or 20007

CSE 341 Spring 2007, Lecture 6

Implementing lists

Want: null, hd, tl, ::
How: Arrays? Pointers? Other?

Costs: memory, time, code

CSE 341 Spring 2007, Lecture 6

Using Lists (Java)

Consider a linked list of integers, implemented in Java.
e What data structure (if you build it from scratch)?
How would you implement functions for:
e Test if a list is empty? (How fast?)
e Extract the hd of a Ist? (How fast?)
e Extract the tl of a Ist? (How fast?)
e Implement ::7 (How fast? Semantics?)
e Find the /ast element of a list? (How fast? How much memory?)

e Find the length of a list? (How fast? How much memory?)

CSE 341 Spring 2007, Lecture 6

Implementing lists

Want: null, hd, tl, ::
How: Arrays? Pointers? Other?

Costs: memory, time, code

[1,2,3]

3 «——— -

N\

N\

]\

CSE 341 Spring 2007, Lecture 6

Using Lists (ML)

Consider

0

1 + len xs;

fun len []

| len (x::x8)

val theLength = len [1,2,3,4,5];
Q: How do you implement function call?

A: “Activation Records” and a “Call Stack”

CSE 341 Spring 2007, Lecture 6

Activation Records

What:
e Info about each activation of each procedure
e Dynamically created on call, destroyed (usually) on return
e Values of local variables
e Where was | called from/Where do | return to?

e (Housekeeping info: save state, registers, temp variables, partially
evaluated exprs, etc. across function calls)

CSE 341 Spring 2007, Lecture 6

Activation Records (cont.)

Why:

e Esp. with recursion, there may be many simultaneous activations
of a given procedure, each with different values for local vars,

different return addresses, etc.

e The AR is a simple implementation trick to keep it all straight

Downsides:

e The main source of “function call overhead”, both space & time.

CSE 341 Spring 2007, Lecture 6

funlen[] =0

| len (x::xs) =1 + len xs;

val theLength =len [1,2,3]; - len
| o
- - — len
\ 1+ 7?7 —
— len

D +——1— N
\ 1+ 7 —
len

N
e
1+7?

<

TATTY

main

NANVANVA

[len([1,2,3]) <+

CSE 341 Spring 2007, Lecture 6

o

—h

N

w

AR

Call Stack

10

Implementing calls

Consider

0

1 + len xs;

fun len []

| len (x::x8)

val thelLength = len [1,2,3,4,5];
Compare:

fun last [x] = X

| last(x::xs) last xs;

val thelLast = last [1,2,3,4,5];

CSE 341 Spring 2007, Lecture 6

11

Tail calls
A call £(x) is called a tail call if it appears at the “tail end” of g, and

the value of f£(x) is returned as the value of g without change.

Why care? Because they can be optimized! The usual call mechanism:

e Suspend activation of g

e Build AR for £, then run £

e Destroy AR for £, passing value of £(x) back to g

e Destroy AR for g, passing value of g(-) = f(x) back to g's caller
Can be streamlined to:

e Reuse g's AR for £

e Don't “call” £, just jump to start of its code

e When f returns, return its value directly g's caller

A key special case: direct tail-recursion turns into a loop!

CSE 341 Spring 2007, Lecture 6

12

Accumulators: can turn non-tail calls into tail calls

fun len []

| len (x::x8)

0

1 + len xs;

Becomes:

fun len2 1lst =

let lenaux([], acc) = acc

| lenaux(x::xs,acc) = lenaux(xs, acc+1);
in

lenaux(1lst,0)

end;

The standard trick: Do ops on way in, not way out. Instead of operating
on recursive result, move operation into the recursive call.

CSE 341 Spring 2007, Lecture 6

13

Tail calls: definition

If the result of £ (x) is the result of the enclosing function body, then
f(x) is a tail call.

More precisely, a tail call is a call in tail position:

In fun £(x) = e, e is in tail position.

If if el then e2 else e3is in tail position, then e2 and e3 are
in tail position (not e1). (Similar for case).

If let b1 ... bn in e end is in tail position, then e is in tail
position (not any binding expressions).

Function arguments are not in tail position.

CSE 341 Spring 2007, Lecture 6

14

