Goals

- Contrast type synonyms with new types
- See pattern-matching for built-in “one of” types (important for ML programming) and “each of” types
- Investigate why accumulator-style recursion can be more efficient

Type synonyms

You can bind a type name to a type. Example:

- type intpair = int * int
- type point = int * int
- type complex = int * int

(We call something else a type variable.)

In ML, this creates a synonym, also known as a transparent type definition. Recursion not allowed.

So a type name is equivalent to its definition.

To contrast, the type a datatype binding introduces is not equivalent to any other type (until possibly a later type binding).

Review: datatypes and pattern-matching

Evaluation rules for datatype bindings and case expressions:

\[\text{datatype } t = C_1 \text{ of } t_1 \mid C_2 \text{ of } t_2 \mid \ldots \mid C_n \text{ of } t_n \]

Adds constructors \(C_i \) where \(C_i \; \nu \) is a value (and \(C_i \) has type \(\text{li} \rightarrow \text{li} \)).

\[\text{case } \phi \text{ of } p_1 \Rightarrow \nu_1 \mid p_2 \Rightarrow \nu_2 \mid \ldots \mid p_n \Rightarrow \nu_n \]

- Evaluate \(\phi \) to \(\nu \)
- If \(p_i \) is the first pattern to match \(\nu \), then result is evaluation of \(\nu_i \) in environment extended by the match.
- If \(C \) is a constructor of type \(t_1 \times \ldots \times t_m \rightarrow t \), then \(C(x_1, \ldots, x_m) \) is a pattern that matches \(C(\nu_1, \ldots, \nu_m) \) and the match extends the environment with \(x_1 \) bound to \(\nu_1 \) ... \(x_m \) to \(\nu_m \).
- Coming soon: many more pattern forms.
Why patterns?

Even without more pattern forms, this design has advantages over functions for “testing and deconstructing” (e.g., null, hd, and tl):

- easier to check for missing and redundant cases
- more concise syntax by combining “test, deconstruct, and bind”
- you can easily define testing and deconstructing in terms of pattern-matching

In fact, case expressions are the preferred way to test variants and extract values from all ML’s “one-of” types, including predefined ones (\(\square\) and \(\therefore\) just funny syntax).

So: Do not use functions \(\text{hd}, \text{tl}, \text{null}, \text{isNull}, \text{valOf}\)

Teaser: These functions are useful for passing as values

Tuple/record patterns

You can also use patterns to extract fields from tuples and records: pattern \{f1=x1, \ldots, fn=xn\} (or \(x_1, \ldots, x_n\)) matches \{f1=v1, \ldots, fn=vn\} (or \(v_1, \ldots, v_n\)).

For record-patterns, field-order does not matter.

This is better style than \#1 and \#foo, and it means you do not (ever) need to write function-argument types.

Instead of a case with one pattern, better style is a pattern directly in a \texttt{val} binding.

Next time: “deep” (i.e., nested) patterns

Recursion

You should now have the hang of recursion:

- It’s no harder than using a loop (whatever that is)
- It’s much easier when you have multiple recursive calls (e.g., with functions over ropes or trees)

But there are idioms you should learn for\textit{elegance, efficiency, and understandability}.

Today: using an \texttt{accumulator}.

Accumulator lessons

- Accumulators can avoid data-structure copying
- Accumulators can reduce the depth of recursive calls that are not \textit{tail calls}
- Key idioms:
 - Non-accumulator: compute recursive results and combine
 - Accumulator: use recursive result as new accumulator
 - The base case becomes the initial accumulator

You will use recursion in non-functional languages—this lesson still applies.

Let’s investigate the evaluation of \texttt{to_list_1} and \texttt{to_list_2}.