Lists

We can have pairs of pairs of pairs... but we still “commit” to the amount of data when we write down a type.

Lists can have any number of elements:

- \([\,]\) is the empty list (a value)
- More generally, \([v_1,v_2,\ldots,v_n]\) is a length \(n\) list
- If \(e_1\) evaluates to \(v\) and \(e_2\) evaluates to a list \([v_1,v_2,\ldots,v_n]\), then \(e_1::e_2\) evaluates to \([v,v_1,v_2,\ldots,v_n]\) (a value).
- \(\text{null } e\) evaluates to true if and only if \(e\) evaluates to \([\,]\)
- If \(e\) evaluates to \([v_1,v_2,\ldots,v_n]\), then \(\text{hd } e\) evaluates to \(v_1\) and \(\text{tl } e\) evaluates to \([v_2,\ldots,v_n]\).
 - If \(e\) evaluates to \([\,]\), both \(\text{hd } e\) and \(\text{tl } e\) raise run-time exceptions. (Different from type errors; more on this later.)
List types

A given list’s elements must all have the same type.

If the elements have type \(t \), then the list has type \(t \ list \). Examples: \(\text{int list}, (\text{int*int}) \ list, (\text{int list}) \ list \).

What are the type rules for ::, null, hd, and tl?

- Possible exceptions do not affect the type.

Hmmm, that does not explain the type of []?

- It can have any list type, which is indicated via ’a list.
- That is, we can build a list of any type from [].
- **Polymorphic** types are 3 weeks ahead of us.
 - Teaser: null, hd, and tl are not keywords!
Recursion again

Functions over lists that depend on all list elements will be recursive:

- What should the answer be for the empty list?
- What should they do for a non-empty list? (In terms of answer for the tail of the list.)

Functions that produce lists of (potentially) any size will be recursive:

- When do we create a small (e.g., empty) list?
- How should we build a bigger list out of a smaller one?
Let bindings

Motivation: Functions without local variables can be poor style and/or really inefficient.

Syntax: \texttt{let } b_1 \ b_2 \ldots \ b_n \ \texttt{in} \ e \ \texttt{end} \textit{where each } b_i \textit{is a } binding.\textit{.}

Typing rules: Type-check each \(b_i \) and \(e \) in context including previous bindings. Type of whole expression is type of \(e \).

Evaluation rules: Evaluate each \(b_i \) and \(e \) in environment including previous bindings. Value of whole expression is result of evaluating \(e \).

Elegant design worth repeating:

- Let-expressions can appear anywhere an expression can.
- Let-expressions can have any kind of binding.
 - Local functions can refer to any bindings \textit{in scope}.\textit{.}
More than style

Exercise: hand-evaluate bad_max and good_max for lists \([1, 2]\), \([1, 2, 3]\), and \([3, 2, 1]\).

Extra Credit Exercise: As a function of \(n\), how long will it take to calculate

- \(\text{bad}_\text{max}([1, 2, \ldots, n])\)?
- \(\text{bad}_\text{max}([n, n-1, \ldots, 1])\)?
Summary and general pattern

Major progress: recursive functions, pairs, lists, let-expressions

Each has a syntax, typing rules, evaluation rules.

Functions, pairs, and lists are very different, but we can describe them in the same way:

- How do you create values? (function definition, pair expressions, empty-list and ::)
- How do you use values? (function application, #1 and #2, null, hd, and tl)

This (and conditionals) is enough for your homework though:

- andalso and orelse help
- You need options (next slide)
- Soon: much better ways to use pairs and lists (pattern-matching)
Options

“Options are like lists that can have at most one element.”

- Create a `t` option with `NONE` or `SOME e` where `e` has type `t`.
- Use a `t` option with `isSome` and `valOf`

Why not just use (more general) lists? An interesting style trade-off:

- Options better express purpose, enforce invariants on callers, maybe faster.
- But cannot use functions for lists already written.