So far...

map : given F and list [a1,a>...apn], produces
[F(a1), F(az2),... F(a3)]

reduce : given F and list [a1,a5...an],
produces F(ay, F(as, F(...,F(a,_1,an)...)))

filter : given predicate P and list [a1,a5...an],
produces elements in the given list that
satisfy predicate P.

fun map (F,nil) = nil

| map (F,x::xs) = F(x)::map(F,xs)

exception EmptyList;
fun reduce(F, nil) = raise EmptyList
| reduce(F, [al]) = a

| reduce(F, x::xs) = F(x, reduce(F, xs));

fun filter(P, nil) = nil
| filter(P, x::xs) =
if P(x) then x::filter(P, xs)
else filter(P,xs)

Question: what is the type of these
functions?

Mini-exercise:

IM1° (1)

5
—1 ¢

1

hint: use map and reduce

A relaxing exercise to wake you up...

Question: Write a function tabulate that as
arguments an initial value a, an increment
delta, a number of points n, and a function F
of type (real—real).

Return a list of two-tuples (z, F'(xz)) where x
= a,a+ delta,a+ 2 xdelta, ...,a+ (n— 1) = delta

Side Note 1: Try not using parentheses on
your function arguments. ex: fun F x instead
of fun F(x).

Side Note 2: What will the type be?

fun tabulate a delta n F =

let
fun t i result =
let
val x = atreal(i)*delta
in
if i=n
then result
else t (i+1) (result@[(x, F(x))1)
end
in
t 0 []
end

Calculus

No, you're not in the wrong classroom

Derivative

The derivative of a function f with respect to x is
denoted f'(z) or &, which is defined as

f@+h)—f (=)
f@)=—=

or more symmetrically as

f(@4h) = f(z—h)
f'(x) o

To do numerical differentiation, simply pick some very
small h, say, 1FE — 6.

Some nostalgic examples:

d.,..n
da:x

d
dxlnx

d .
%Slnx

dx

Integral

Definite integral: An integral [f(z)dz with upper
and lower limits.

Indefinite integral (antiderivative): An integral of
the form ff(z)dz, that is, without upper and lower
limits.

There are tons of ways to do numerical integration
(and you probably know better than I do), but we'll
stick to the simplest one (and the only way I can
understand without re-reading Calculus), which is the
trapezoidal rule

f:f(w)dw ~ (b — a)w

For a more accurate approximation, we can break up
the interval [a,b] into n subintervals

2 f(z)da ~ oo (LaRI® 4 S p g + kb9))

