
'

&

$

%

CSE 341:
Programming Languages

Winter 2006 Lecture 8 — Function Closures

CSE341 Winter 2006, Lecture 8 1



'

&

$

%

Today

• Continue examples of functions taking and returning other

functions

• Discuss free variables in function bodies

• In general, discuss environments and lexical scope

• See key idioms using first-class functions

CSE341 Winter 2006, Lecture 8 2



'

&

$

%

If you remember one thing...

We evaluate expressions in an evironment, and function bodies in

an environment extended to map arguments to values.

But which one? The environment in which the function was defined!

An equivalent description:

• Functions are values, but they’re not just code.

• fun f p = e and fn p => e evaluate to values with two parts

(a “pair”): the code and the current environment

• Function application evaluates the “pair”’s function body in the

“pair”’s environment (extended)

• This “pair” is called a (function) closure.

There are lots of good reasons for this semantics.

For hw, exams, and competent programming, you must “get this”!

CSE341 Winter 2006, Lecture 8 3



'

&

$

%

Example 1

val x = 1

fun f y = x + y

val x = 2

val y = 3

f (x+y)

CSE341 Winter 2006, Lecture 8 4



'

&

$

%

Example 2

val x = 1

fun f y = let val x = 2 in fn z => x + y + z end

val x = 3

val g = f 4

val y = 5

g 6

CSE341 Winter 2006, Lecture 8 5



'

&

$

%

Example 3

fun f g = let val x = 3 in g 2 end

val x = 4

fun h y = x + y

f h

CSE341 Winter 2006, Lecture 8 6



'

&

$

%

Scope

A key language concept: how are user-defined things resolved?

We have seen that ML has lexically scoped variables?

Another (more-antiquated-for-variables, sometimes-useful) approach is

dynamic scope

Example of dynamic scope: Exception handlers (where does raise

transfer control?)

Another example of dynamic scope: shell commands and shell scripts

(environment variables)

The more restrictive “no free variables” makes important idioms

impossible.

CSE341 Winter 2006, Lecture 8 7



'

&

$

%

Why lexical scope?

1. Functions can be reasoned about (defined, type-checked, etc.)

where defined

2. Function meaning not related to choice of variable names

3. “Closing over” local variables creates private data; function definer

knows function users do not depend on it

Example:

fun add_2x x = fn z => z + x + x

fun add_2x x = let val y = x + x in fn z => z + y end

CSE341 Winter 2006, Lecture 8 8



'

&

$

%

Key idioms with closures

• Create similar functions

• Pass functions with private data to iterators (map, fold, ...)

• Combine functions

• Provide an ADT

• As a callback without the “wrong side” specifying the

environment.

• Partially apply functions (“currying”)

CSE341 Winter 2006, Lecture 8 9



'

&

$

%

Create similar functions

val addn = fn n => fn m => n+m

val increment = addn 1

val add_two = addn 2

fun f n =

if n=0

then []

else (addn n)::(f (n-1))

CSE341 Winter 2006, Lecture 8 10



'

&

$

%

Private data, for map/fold

Previously we saw map, this fold function is even more useful:

fun fold (f,acc,l) =

case l of

[] => acc

| hd::tl => fold (f, f(acc,hd), tl)

Example uses (without using private data):

fun f1 l = fold ((fn (x,y) => x+y), 0, l)

fun f2 l = fold ((fn (x,y) => x andalso y >= 0), true, l)

Example use (with private data):

fun f3 (l,lo,hi) =

fold ((fn (x,y) =>

if y >= lo andalso y <= hi then x+1 else x),

0, l)

CSE341 Winter 2006, Lecture 8 11



'

&

$

%

More on fold and private data

Another more general example:

fun f4 (l,g) = fold ((fn (l2,y) => (g y)::l2), [], l)

A fold function over a data structure is much like a visitor pattern in

OOP.

We define fold once and do not restrict the type of the function passed

to fold or the environment in which it is defined.

In general, libraries should not unnecessarily restrict clients.

CSE341 Winter 2006, Lecture 8 12



'

&

$

%

Combine functions

fun f1 (g,h) = fn x => g (h x)

fun f2 (g,h) = fn x =>

case g x of NONE => h x | SOME y => y

CSE341 Winter 2006, Lecture 8 13


