
'

&

$

%

CSE 341:
Programming Languages

Winter 2006

Lecture 6— The truth about bindings and course motivation

CSE341 Winter 2006, Lecture 6 1

'

&

$

%

Where we are

Class has covered tremendous ground—you will catch up when you do

homework 2.

Next time we’ll take up first-class functions (closures, functions as

values):

• A really key idea in computer science

But we haven’t yet seen that pattern-matching is an elegant

generalization of variable binding.

And we owe you an explanation of why we should study programming

languages, particulary ML, Scheme, and Smalltalk

CSE341 Winter 2006, Lecture 6 2

'

&

$

%

Deep patterns

Patterns are much richer than we have let on. A pattern can be:

• A variable (matches everything, introduces a binding)

• _ (matches everything, no binding)

• A constructor and a pattern (e.g., C p) (matches a value if the

value “is a C” and p matches the value it carries)

• A pair of patterns ((p1,p2)) (matches a pair if p1 matches the

first component and p2 matches the second component)

• A record pattern...

• An integer constant...

• ...

CSE341 Winter 2006, Lecture 6 3

'

&

$

%

The truth, the whole truth, and nothing but the
truth

It’s really:

• val p = e

• fun f p1 = e1 | f p2 = e2 ... | f pn = en

• case e of p1 => e1 | ... | pn => en

Inexhaustive matches may raise exceptions and are bad style.

Example: could write Rope pr or Rope (r1,r2)

Fact: Every ML function takes exactly one argument!

CSE341 Winter 2006, Lecture 6 4

'

&

$

%

Some function examples

• fun f1 () = 34

• fun f2 (x,y) = x + y

• fun f3 pr = let val (x,y) = pr in x + y end

Is there any difference to callers between f2 and f3?

In most languages, “argument lists” are syntactically separate,

second-class constructs.

Can be useful: f2 (if e1 then (3,2) else pr)

CSE341 Winter 2006, Lecture 6 5

'

&

$

%

A question?

What’s the best car?

What are the best kind of shoes?

CSE341 Winter 2006, Lecture 6 6

'

&

$

%

Aren’t all languages the same?

Yes: Any input-output behavior you can program in language X you

can program in language Y

• Java, ML, and a language with one loop and three infinitely-large

integers are “equal”

• This is called the “Turing tarpit”

Yes: Certain fundamentals appear in most languages (variables,

abstraction, each-of types, inductive definitions, ...)

• Travel to learn more about where you’re from

No: Most cars have 4 tires, 2 headlights, ...

• Mechanics learn general principles and what’s different

CSE341 Winter 2006, Lecture 6 7

'

&

$

%

Aren’t these academic languages worthless?

In the short-term, maybe: Not many summer internships using ML?

But:

• Knowing them makes you a better Java, C, and Perl programmers

(affects your idioms)

• Java did not exist in 1993; what does not exist now?

• Do Java and Scheme have anything in common? (Hint: check the

authors)

• Eventual vindication: garbage-collection and generics

CSE341 Winter 2006, Lecture 6 8

'

&

$

%

Aren’t the semantics my least concern?

Admittedly, there are many important considerations:

• What libraries are available?

• What does my boss tell me to do?

• What is the de facto industry standard?

• What do I already know?

Technology leaders affect the answers to these questions.

Sound reasoning about programs, interfaces, and compilers requires

knowledge of semantics.

CSE341 Winter 2006, Lecture 6 9

'

&

$

%

Aren’t languages somebody else’s problem?

If you design an extensible software system, you’ll end up designing a

(small?) programming language!

Examples: VBScript, JavaScript, PHP, ASP, QuakeC, Renderman,

bash, AppleScript, emacs, Eclipse, AutoCAD, ...

Another view: A language is an interface with just a few functions

(evaluate, typecheck) and a sophisticated input type.

In other words, an interface is just a stupid programming language.

CSE341 Winter 2006, Lecture 6 10

'

&

$

%

Summary

There is no such thing as a “best programming language”. (There are

good general design principles we will study.)

A good language is a relevant, crisp, and clear interface for writing

software.

Software leaders should know about programming languages.

Learning languages has super-linear payoff.

• But you have to learn the semantics and idioms, not a cute

syntactic trick for printing “Hello World”.

End of the course: Language-design goals, mechanisms, and trade-offs

Next time: why ML, Scheme, and Smalltalk?

CSE341 Winter 2006, Lecture 6 11

