
'

&

$

%

CSE 341:
Programming Languages

Winter 2006

Lecture 5— Type synonyms, more pattern-matching, accumulators

CSE341 Winter 2006, Lecture 5 1

'

&

$

%

Goals

• Contrast type synonyms with new types

• See pattern-matching for built-in “one of” types (not really a

concept, but important for ML programming) and “each of” types

• Investigate why accumulator-style recursion can be more efficient

CSE341 Winter 2006, Lecture 5 2

'

&

$

%

Type synonyms

You can bind a type name to a type. Example:

type intpair = int * int

(We call something else a type variable.)

In ML, this creates a synonym, also known as a transparent type

definition. Recursion not allowed.

So a type name is equivalent to its definition.

To contrast, the type a datatype binding introduces is not equivalent

to any other type (until possibly a later type binding).

CSE341 Winter 2006, Lecture 5 3

'

&

$

%

Review: datatypes and pattern-matching

Evaluation rules for datatype bindings and case expressions:

datatype t = C1 of t1 | C2 of t2 | ... | Cn of tn

Adds constructors Ci where Ci v is a value (and Ci has type ti->t).

case e of p1 => e1 | p2 => e2 | ... | pn => en

• Evaluate e to v

• If pi is the first pattern to match v, then result is evaluation of ei

in environment extended by the match.

• If C is a constructor of type t1 * ... * tn -> t, then

C(x1,...,xn) is a pattern that matches C(v1,...,vn) and the

match extends the environment with x1 to v1 ... xn to vn.

• Coming soon: many more pattern forms.

CSE341 Winter 2006, Lecture 5 4

'

&

$

%

Why patterns?

Even without more pattern forms, this design has advantages over

functions for “testing and destructing” (e.g., null, hd, and tl):

• easier to check for missing and redundant cases

• more concise syntax by combining “test, destruct, and bind”

• you can easily define testing and destructing in terms of

pattern-matching

In fact, case expressions are the preferred way to test variants and

extract values from all ML’s “one-of” types, including predefined ones

([] and :: just funny syntax).

So: Do not use functions hd, tl, null, isSome, valOf

Teaser: These functions are useful for passing as values

CSE341 Winter 2006, Lecture 5 5

'

&

$

%

Tuple/record patterns

You can also use patterns to extract fields from tuples and records:

pattern {f1=x1, ..., fn=xn} (or (x1,...,xn)) matches

{f1=v1, ..., fn=vn} (or (v1,...,vn)).

For record-patterns, field-order does not matter.

This is better style than #1 and #foo, and it means you do not (ever)

need to write function-argument types.

Instead of a case with one pattern, better style is a pattern directly in

a val binding.

Next time: “deep” (i.e., nested) patterns.

CSE341 Winter 2006, Lecture 5 6

'

&

$

%

Recursion

You should now have the hang of recursion:

• It’s no harder than using a loop (whatever that is)

• It’s much easier when you have multiple recursive calls (e.g., with

functions over ropes or trees)

But there are idioms you should learn for elegance, efficiency, and

understandability.

Today: using an accumulator.

CSE341 Winter 2006, Lecture 5 7

'

&

$

%

Accumulator lessons

• Accumulators can avoid data-structure copying

• Accumulators can reduce the depth of recursive calls that are not

tail calls

• Key idioms:

– Non-accumulator: compute recursive results and combine

– Accumulator: use recursive result as new accumulator

– The base case becomes the initial accumulator

You will use recursion in non-functional languages—this lesson still

applies.

Let’s investigate the evaluation of to_list_1 and to_list_2.

CSE341 Winter 2006, Lecture 5 8

'

&

$

%

Tail calls

If the result of f(x) is the result of the enclosing function body, then

f(x) is a tail call.

More precisely, a tail call is a call in tail position:

• In fun f(x) = e, e is in tail position.

• If if e1 then e2 else e3 is in tail position, then e2 and e3 are

in tail position (not e1). (Similar for case).

• If let b1 ... bn in e end is in tail position, then e is in tail

position (not any binding expressions).

• Function arguments are not in tail position.

• ...

CSE341 Winter 2006, Lecture 5 9

'

&

$

%

So what?

Why does this matter?

• Implementation takes space proportional to depth of function calls

(“call stack” must “remember what to do next”)

• But in functional languages, implementation must ensure tail calls

eliminate the caller’s space

• Accumulators are a systematic way to make some functions tail

recursive

• “Self” tail-recursive is very loop-like because space does not grow.

CSE341 Winter 2006, Lecture 5 10

