CSE 341:
Programming Languages

Winter 2006
Lecture 22— Defining and Implementing Dynamic-Dispatch

CSE341 Winter 2006, Lecture 22 1




/VVhere are We? \

In 7 weeks, we've picked up enough ML, Scheme, and Smalltalk to

talk intelligently about modern, general-purpose PLs.

Now we need to:
e Consider OO semantics as carefully as we did FP semantics
e Consider various OO extensions and design decisions
e Consider OO type systems as carefully as we did FP type systems
e Compare OO and FP, specifically extensibility and polymorphism
e Discuss memory management and garbage collection
e See some course concepts in Java

Today: Smalltalk look-up rules, a lower-level view of dynamic dispatch

- /

CSE341 Winter 2006, Lecture 22 2




/I_ook—up rules \

How we resolve various “symbols” is a key part of language definition.

e In many ways, FP boils down to first-class functions, lexical scope,

and immutability.

In Smalltalk, we syntactically distinguish variables (which resolve to
objects), messages (which determine what method is called), and a

few special names (true, false, nil, self, super)
e Java makes the same distinction

e Messages are second-class

- /

CSE341 Winter 2006, Lecture 22 3




/VVithout further ado \

To resolve a variable (e.g., x):

e Like in ML or Scheme, if a use of x is in the lexical scope of
code-block variable ([:x | ...]) or local method variable or
parameter, we resolve x using the environment in which the

code-block or method-body was defined.

— Smalltalk implementation must build closures (those pairs of

code and environment you built last week)

e Else if a use of x is in a method m of class A (because A or a
transitive-superclass of A defines m) and x is a instance or class
variable of A (because A or a transitive-superclass of A defines x),
then x resolves to a field of the object self resolves to.

e Else if x is a global (e.g., a class object), then x resolves to that.

Note: Pool dictionaries actually add another possibility, but ignore

ot Y

CSE341 Winter 2006, Lecture 22 4




/I\Iow messages \

To resolve a message (e.g., m):

e A message is sent to an object (e.g., e m), so first evalaute e to
an object obj.

e Get the class of obj, call it C (every object has a class).

e If m is defined in C, invoke that method, else recur with superclass
of C.

CSE341 Winter 2006, Lecture 22 5



/VVhat about self? \

As always, evaluation takes place in an environment.

In every environment, self is always bound to some object. (This
determines message resolution for self and super.)

Key principles of OOP:
e Inheritance and override (last slide)
e Private fields (just abstraction)
e The semantics of message send

To send m to obj means evaluate the body of the method m resolves to
for obj in an environment with argument names mapped to actual
arguments and self bound to obj.

That last phrase is exactly what “late-binding”, “dynamic dispatch”,
and “virtual function call’ mean. It is why code defined in

\inercIasses can invoke code defined in subclasses. /

CSE341 Winter 2006, Lecture 22 6



/Some Perspective on Late-Binding

Later we will discuss design considerations for when late-binding is a
good or bad thing. For now, here are some opinions:
e Late-binding makes a more complicated semantics
— Smalltalk without self is easier to define and reason about
— It takes months in 142/143 to get to where we can explain it

— |t makes it harder to reason about programs

e But late-binding is often an elegant pattern for reuse
— Smalltalk without self is not Smalltalk
— Late-binding fits well with the “object analogy”

— Late-binding can make it easier to localize specialized code
even when other code wasn't expecting specialization

-

CSE341 Winter 2006, Lecture 22 7



/A Lower-Level View

~

Smalltalk clearly encourages late-binding with its message-send

semantics.
But a definition in one language is often a pattern in another...
We can simulate late-binding in Scheme easily enough

And sketch how compilers/interpreters implement objects

way to reason about programs

e A naive but accurate view of implementation can give an alternate

CSE341 Winter 2006, Lecture 22 8



ﬂl’he Key ldea \

The key to implementing late-binding is extending all the methods to

take an extra argument (for self).

So an object is implemented as a record holding methods and fields,
where methods are passed self explicitly.

And message-resolution always uses self.

CSE341 Winter 2006, Lecture 22 9



/VVhat about classes and performance? \

This approach, while a fine pattern, has some problems:

e It doesn’t model Smalltalk, where methods can be added/removed
from classes dynamically and an object’s class determines
behavior.

e [t is space-inefficient: all objects of a class have the same methods.

e It is time-inefficient: message-send should be constant-time, not
list traversals.

We fix the first two by adding a level of indirection: put a single class
field in an object and have a global class-table.

We fix the third with better data structures and various tricks.

Nonetheless: Without dynamic class changes, the “method slot”
\ipproach and “class field” approach are equivalent. /

CSE341 Winter 2006, Lecture 22 10



/Really Implementing Late-Binding \

e \We have seen late-binding as a Scheme pattern

e In reality, we have learned roughly how OO implementations do it,
without appealing to assembly code (where it really happens)

e Using ML instead of Scheme would have been a pain:
— The ML type system is “unfriendly” for self.

— We would have roughly taken the “embed Scheme in ML"
approach, giving every object the same ML type.

— But to be fair, most OO languages are “unfriendly” to ML
datatypes, first-class functions, and parametric polymorphism.

* Another day we'll show closures as a pattern in OOP

- /

CSE341 Winter 2006, Lecture 22 11




