CSE 341:
Programming Languages

Spring 2006

Lecture 8 — First Class Functions, Closures, ...

CSE 341 Spring 2006, Lecture 8

Today

e Functions as first-class citizens

e Examples of functions taking and returning other functions
e Discuss free variables in function bodies

e In general, discuss environments and lexical scope

e See key idioms using first-class functions

CSE 341 Spring 2006, Lecture 8

A (Partial) Motivating Example—Sorting

Sorting is useful in many contexts, for many kinds of data.

Don't want specialized sort routine for each
(sort(int list), sort(string list)...)

Polymorphism, classes, etc. only handle part of the problem:
e sort(’a list) -> ’a list is good,...
e but in what order? based on what part of the data?

Partial answer: write a function to compare two records, pass it to
sort along with data

What if you don’t know at “compile time"?

Fuller answer: write a function that dynamically builds (e.g., based on
user input) a function to compare two records, pass it to sort ...

CSE 341 Spring 2006, Lecture 8

First-class functions

Want: ability to treat functions “just like" (other) data—assign to
variables, pass as values, return as results, etc.

While “call-backs” like record comparison in sorting are one
motivation, and a commonly occuring case, more general treatment of
functions enables a very different style of programming, because it
enables new styles of control structure.

Need: a very precise understanding of the meaning (“semantics”) of
functions, function definitions, function applications (calls), etc.

CSE 341 Spring 2006, Lecture 8

Semantics of First-class Functions

e Functions are values. (Variables in the environment are bound to

them.)

e We can pass functions to other functions.

— Factor common parts and abstract different parts.

e \We can return functions as values from other functions.

CSE 341 Spring 2006, Lecture 8

Anonymous Functions

As usual, we can write functions anywhere we write expressions.

e We already could:
(let fun f x = e in f end)

e Here is a more concise way (better style when possible):

(fn x => e)

e Cannot do this for recursive functions (why?)

CSE 341 Spring 2006, Lecture 8

Returning Functions

The following has type int->int->int:
fun f x =fny = x +y
Syntax note: -> “associates to the right”

e t1->t2->t3 means t1->(t2->t3)

Again, there is nothing new here.

The key question: What about free variables in a function value?

What environment do we use to evaluate them?

Are such free variables useful?

CSE 341 Spring 2006, Lecture 8

If you remember one thing...

We evaluate expressions in an evironment, and function bodies in

an environment extended to map arguments to values.

But which one? The environment in which the function was defined!
An equivalent description:
e Functions are values, but they're not just code.

e fun f p = e and fn p => e evaluate to values with two parts
(a “pair’): the code and the current environment

e Function application evaluates the “pair’’s function body in the

“pair’’s environment (extended)
e This “pair” is called a (function) closure.

There are lots of good reasons for this semantics.

For hw, exams, and competent programming, you must “get this" !

CSE 341 Spring 2006, Lecture 8

Other Environmental Effects

Even the type of a function can change depending on its environment.

val y = "foo"

fun equals_y x

if x =y
then '"same"
else "diff"
VS.
val y = 3

fun equals_y x
if x =y
then "same"
else "diff"

CSE 341 Spring 2006, Lecture 8

Example 1

1

val x
fun f

val X

X+y

N <
I

2
3

val y
f (x+y)

CSE 341 Spring 2006, Lecture 8

10

Example 2

I
|—L

val x
fun f

val X

N <
I

I
o Hh W
S

val g

val y
g 6

let val x = 2 in fn z => x + y + z end

CSE 341 Spring 2006, Lecture 8

11

Example 3

fun f
val x
fun h
fh

let val x = 3 in g 2 end

X+y

CSE 341 Spring 2006, Lecture 8

12

