Lists

We can have pairs of pairs of pairs... but we still “commit” to the amount of data when we write down a type.

Lists can have any number of elements:

- \([]\) is the empty list (a value)
- More generally, \([v_1, v_2, \ldots, v_n]\) is a length \(n\) list
- If \(e_1\) evaluates to \(v\) and \(e_2\) evaluates to a list \([v_1, v_2, \ldots, v_n]\), then \(e_1 : e_2\) evaluates to \([v, v_1, v_2, \ldots, v_n]\) (a value).
- \texttt{null} \(e\) evaluates to true if and only if \(e\) evaluates to \([]\)
- If \(e\) evaluates to \([v_1, v_2, \ldots, v_n]\), then \texttt{hd} \(e\) evaluates to \(v_1\) and \texttt{tl} \(e\) evaluates to \([v_2, \ldots, v_n]\).
 - If \(e\) evaluates to \([]\), both \texttt{hd} \(e\) and \texttt{tl} \(e\) raise run-time exceptions. (Different from type errors; more on this later.)

List types

A given list’s elements must all have the same type.

If the elements have type \(t\), then the list has type \(t\) \texttt{List}. Examples: \texttt{int list}, \texttt{(int*int) list}, \texttt{(int list) list}.

What are the type rules for \(::\), \texttt{null}, \texttt{hd}, and \texttt{tl}?

- Possible exceptions do not affect the type.

Hmmm, that does not explain the type of \([]\)?

- It can have any list type, which is indicated via ‘\(_\) a list.’
- That is, we can build a list of any type from \([]\).
- Polymorphic types are 3 weeks ahead of us.
 - Teaser: \texttt{null}, \texttt{hd}, and \texttt{tl} are not keywords!

Recursion again

Functions over lists that depend on all list elements will be recursive:

- What should the answer be for the empty list?
- What should they do for a non-empty list? (In terms of answer for the tail of the list.)

Functions that produce lists of (potentially) any size will be recursive:

- When do we create a small (e.g., empty) list?
- How should we build a bigger list out of a smaller one?
Let bindings

Motivation: Functions without local variables can be poor style and/or really inefficient.

Syntax: \texttt{let } b_1 \ b_2 \ \ldots \ b_n \ \texttt{in } e \ \texttt{end} where each \(b_i \) is a binding.

Typing rules: Type-check each \(b_1 \) and \(e \) in context including previous bindings. Type of whole expression is type of \(e \).

Evaluation rules: Evaluate each \(b_1 \) and \(e \) in environment including previous bindings. Value of whole expression is result of evaluating \(e \).

Elegant design worth repeating:

- Let-expressions can appear anywhere an expression can.
- Let-expressions can have any kind of binding.
 - Local functions can refer to any bindings in scope.

More than style

Exercise: hand-evaluate \texttt{bad_max} and \texttt{good_max} for lists \([1,2],[1,2,3]\), and \([3,2,1]\).

Extra Credit Exercise: As a function of \(n \), how long will it take to calculate

- \texttt{bad_max([1, 2, \ldots, n])}?
- \texttt{bad_max([n, n-1, \ldots, 1])}?

Summary and general pattern

Major progress: recursive functions, pairs, lists, let-expressions

Each has a syntax, typing rules, evaluation rules.

Functions, pairs, and lists are very different, but we can describe them in the same way:

- How do you create values? (function definition, pair expressions, empty-list and ::)
- How do you use values? (function application, \#1 and \#2, \texttt{null}, \texttt{hd}, and \texttt{tl})

This (and conditionals) is enough for your homework though:

- \texttt{and/also} and \texttt{or/else} help
- You need \texttt{options} (next slide)
- Soon: much better ways to use pairs and lists (pattern-matching)

Options

“Options are like lists that can have at most one element.”

- Create a \texttt{t_option} with \texttt{NONE} or \texttt{SOME} \(e \) where \(e \) has type \(t \).
- Use a \texttt{t_option} with \texttt{isSome} and \texttt{valOf}

Why not just use (more general) lists? An interesting style trade-off:

- Options better express purpose, enforce invariants on callers, maybe faster.
- But cannot use functions for lists already written.