
CSE341 Spring ’06 Due Wednesday, May 10
Assignment 4

1 Warm-up

As a warm-up, write the following Scheme functions:

1. Write a function add-em-up, which will add all integers in a list at all levels. E.g.,

(add-em-up ’(1 (2 three 4) (5 ((6)) 7))) => 25

2. Write a function remove-member, which removes all instances of a particular atom from a
list of lists. E.g.,

(remove-member ’cup ’((coffee) cup ((tea cup)) (and (hick)) cup))
=> ((coffee) ((tea)) (and (hick)))

3. Write the function foldl of the form (foldl func initial lst) which folds func over
lst from left to right, using initial as the initial accumulator. Func should be a function
of the form (func item acc), where item is an item from the list and acc is the current
accumulator. Be sure not to get confused with foldr; a good way to tell them apart is that
(foldl - 0 ’(1 5)) yields (5 - (1 - 0)) => 4, while (foldr - 0 ’(1 5)) yields
(1 - (5 - 0)) => -4.

4. Write a function contains? of the form (contains? haystack needle), that returns true
if the list haystack contains needle and false otherwise. Use the equivalence predicate eqv?
to make comparisons. Use foldl in your solution.

2 Memoization

For the next few problems, consider the following situation: You have a nearly unlimited supply
of 1, 7, and 11 cent stamps. You want to pay postage on a package with your stamps, where the
cost of postage is x. You want to know the smallest number of individual stamps you can use to
pay the exact postage. Let f(x) be a function that gives you this number. Obviously, if the cost
of postage, x, is zero, then f(x) = 0. For x > 0, there are several possibilities. You could assume
you will use at least one 11-cent stamp, in which case you have (x− 11) cents of postage left to
pay. In that case, f(x− 11) will give the minimum number of stamps needed for the rest of the
postage, to which you add 1 for the 11-cent stamp you assumed. Likewise, you could also assume
a 7-cent or 1-cent stamp. Obviously, you want to choose the one that gives you the smallest
number of stamps, so you should choose the minimum of f(x− 11), f(x− 7), and f(x− 1). This
means that for x > 0, f(x) = 1 + min(f(x− 11), f(x− 7), f(x− 1)). If any of the terms in the
minimum would call f with a value less than zero, you should exclude them (for instance, if x is
8, it doesn’t make sense to guess that you might need an 11-cent stamp).

1



5. Write a recursive function minimum-stamps of the form (minimum-stamps x), where x is the
cost of postage, that returns the minimum number of stamps necessary to pay the postage
using the algorithm above. Your function must be recursive and cannot use any additional
data structures like a memoization table.

6. Write a function minimum-stamps-memo that is a memoized version of minimum-stamps.
That is, it should maintain a table of previously computed answers. When called with a
value of x that has been seen before, it should retrieve the value from the table. When called
with a value for which the answer is not in the table, it should calculate the answer and
update the table. The table must persist across multiple calls to the function. Do not make
the memo table a top-level binding. Do not use minimum-stamps in your solution. Use the
built-in function assoc to simplify your task.

7. In a comment, answer the following questions:

(a) How do minimum-stamps and minimum-stamps-memo compare in execution time for a
very large value of x? How does the execution time of minimum-stamps-memo with a
large value of x compare to the execution time of a second call to the function with the
same x? Why is this?

(b) If minimum-stamps-memo instead used minimum-stamps to calculate answers not in the
memo table (which you shouldn’t have done in your solution), how would it compare in
terms of speed with your implementation of the function? Why?

8. (Extra credit) Write a function minimum-stamps-general of the form
(minimum-stamps-general denom x), where denom is a list of integer denominations of
stamps available and x is the amount of postage to be paid. In particular, if the function
were curried (which it isn’t, so you don’t need to write it this way),
(minimum-stamps-general ’(11 7 1)) would be equivalent to minimum-stamps. Your
function should be memoized, but keep in mind that a given memo table is only valid for a
given set of denominations, so your memo table should not be saved across separate calls to
the function. Hint : use a helper function, and make sure that the memo table persists across
separate calls to the helper.

3 Infix Math Expressions

Don’t Panic

For this part of the homework, you will write a few functions to convert simple math expressions
in infix notation into equivalent Scheme code suitable for evaluation. Before beginning, it’s
important to understand how Scheme programs are represented. Although the description of this
part of the assignment is rather lengthy, the actual amount of code you have to write is minimal;
it is more important that you understand the concepts involved, as they will play a large role in
the second Scheme homework.

Programs as Data

A Scheme expression is represented as either an atom (number, string, symbol, etc.) or list of
expressions, which could in turn be atoms or other lists. Consider this simple expression:

2



(foo (+ bar 42))

This expression consists of an outer list containing the symbol foo and an inner list containing
the symbol +, the symbol bar, and the number 42. Semantically speaking, Scheme interprets this
data structure as an application of the function foo to the result of applying the function + to
bar and 42. However, structurally it is nothing more than a list which we could create
programmatically if we wished:

(list ’foo (list ’+ ’bar 42))

Typing this expression in the DrScheme interactions window will confirm that it produces a list
with the same structure (and printed representation, for that matter) as the first expression. Note
that the single quote character in front of foo, +, and bar prevents Scheme from attempting to
evaluate them as variables; instead, the symbols are inserting directly into the expression as
arguments to list. It’s often convenient to quote parts of a program this way to prevent
evaluation:

(map (lambda (x) (* 2 x)) ’(1 2 3 4))

In the above expression, the list (1 2 3 4) is quoted to prevent Scheme from attempting to
evaluate it as a function application. Instead, it is passed directly to map, and the result (2 4 6
8) is produced. This means we could rewrite the second expression in a more convenient form as
follows:

’(foo (+ bar 42))

Note that everything within the list, including the symbols foo, +, and bar, are quoted and
remain unevaluated. Scheme provides a function, eval, which takes a Scheme expression in list
form and evaluates it, returning the result:

(eval ’(* 2 (+ 1 1))) => 4

This provides a lot of flexibility: A Scheme program can construct and evaluate new Scheme
expressions, or transform and analyze its own code. You will take advantage of this fact to write
functions that take an expression in infix notation and convert it to an expression in prefix
notation that Scheme can evaluate.

Infix expressions

Representation

For convenience, we will define infix expressions so that they can be written easily as a quoted list
in Scheme. Predictably, an infix expression may consist of either an atom or a list. However, how
we evaluate such an expression will differ from normal Scheme semantics. A single atom by itself
(which, for the purposes of this assignment, should only be a number) simply evaluates to itself:

4 => 4

A list of expressions must be handled differently. In the simplest case, the list will be a singleton
list containing only a single element, in which case it evaluates to the value of that element:

3



(5) => 5 ; Singleton list
((5)) => 5 ; Singleton list of a singleton list

We see the first major difference immediately: extra parentheses do not matter as they normally
do in Scheme. The final case (and the most interesting to us) is a list of tokens, where each token
is either an operator (one of +, -, *, and /), or another infix expression. Examples:

(1 + 1) => 2
(1 + 2 * 2) => 5
(2 * (1 + 1)) => 4

The first example is simple enough: the first token is the atom 1, the second token is the operator
+, and third token is also the atom 1. The second example is similar, but shows that expressions
must be evaluated taking into account the normal order of arithmetic operations. In the third
example, one of the tokens is another infix expression.

Evaluation

To evaluate such an expression, we take a divide-and-conquer approach, where we split the
expression into sub-expressions which are easier to evaluate and perform the appropriate
operation with the results. Consider a simple case:

(1 + 2 * 2 + 3)

Because of the order of operations, the additions should occur last. Since we evaluate
sub-expressions first, our sub-expressions become whatever is between the +’s:

ADD of (1) and (2 * 2) and (3)

Next, we evaluate the subexpressions. The first and the last are singleton lists; this happens
because we split the expression (a list), into sub-expressions (which are also lists), so we end up
with 1 and 3 being in lists by themselves. This might not seem obvious, but a natural
implementation of a list-splitting function will do this, so be prepared for it. We extract their
elements, which are atoms, so no further evaluation is required:

ADD of 1 and (2 * 2) and 3

The second sub-expression is another infix expression. Again, we divide it into sub-expressions
around the operator *:

ADD of 1 and (MULT of (2) and (2)) and 3

These sub-expressions are singleton lists, so we extract the elements and are left with:

ADD of 1 and (MULT of 2 and 2) and 3

Conversion

Keep in mind that your task is to convert, not evaluate, the infix expression. However, the
pseudo-expression above rather naturally corresponds to the Scheme expression:

4



(+ 1 (* 2 2) 3)

Therefore, the general conversion algorithm is:

1. Find the operator in the list which should be evaluated last

2. Break the list into subexpressions around this operator

3. Create a Scheme function application expression (which is just a list!) where the function is
the operator used to break up the list, and the arguments are the results of converting the
sub-expressions.

Provided functions

Your solution will need to detect when an expression is an atom or singleton list. You may use
the following two functions for convenience when writing your code:

; Returns true if x is an atom
(define (atom? x)
(not (list? x)))

; Returns true if x is a singleton list
(define (singleton? x)
(and (list? x)

(null? (cdr x))))

Problems

9. Write a function split-by with the form (split-by splitter expression), where
expression is a list and splitter is a symbol. Split-by splits the list into sub-lists
occurring between instances of splitter and returns a list of the sub-lists. You should not
perform a split on any of the sub-lists. This is less complicated than it may sound; see below
for example output. Hint: use a recursive helper function with at least one accumulator.
You may use the built-in function append in your solution.

10. Write a function infix->prefix of the form (infix->prefix expression), where
expression is an expression in infix notation as described above. Your function should
return a Scheme expression (most likely a list) which produces the same answer as
evaluating expression using normal order of operations. You need only handle the
operators +, -, *, and /. You may use (and are encouraged to use) the built-in map function,
plus any functions from part 1.

Example output

(split-by ’X ’(one two X three four X five X six (seven X eight)))
=> ((one two) (three four) (five) (six (seven X eight)))

(infix->prefix ’(1 + 1)) => (+ 1 1)
(infix->prefix ’(1 + 2 * (1 + 1))) => (+ 1 (* 2 (+ 1 1)))
(infix->prefix ’(1 / 2 * 1 / 3)) => (* (/ 1 2) (/ 1 3))
(infix->prefix 4) => 4

5



(infix->prefix ’((((1))) + 2)) => (+ 1 2)
(infix->prefix ’(1 + 2 + 3 - 4 - 5 + 6 + 7) => (+ 1 2 (- 3 4 5) 6 7)

Notes

• Be careful with spaces. ’(1+2) is a list containing the symbol “1+2”, whereas ’(1 + 2) is
what you probably wanted. Having a lot of spaces won’t hurt you, but having too few will
make Scheme parse your input in ways you probably didn’t intend. In general, you always
need spaces to separate elements of a list.

• As shown above, Scheme math functions can take any number of arguments, so you don’t
have to worry about this in your implementation.

• Most functions in this assignment are less than 10 lines, with the stamps functions being
somewhat longer.

6


