

The CLP(R) Programmer’s Manual
Version 1.2

Nevin C. Heintze †

Joxan Jaffar ‡

Spiro Michaylov ∗

Peter J. Stuckey §

Roland H.C. Yap ¶§

‡ IBM Thomas J Watson Research Center

PO Box 704

Yorktown Heights, NY 10598, U.S.A.

† School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213, U.S.A.

∗ Department of Computer and Information Science

The Ohio State University

Columbus, OH 43210-1277, U.S.A.

§ Department of Computer Science

University of Melbourne

Parkville, Victoria 3052, Australia

¶ Department of Computer Science

Monash University

Clayton, Victoria 3168, Australia

September 1992

Contents

1 Introduction 1

2 Syntax and Simple Examples 3

2.1 Terms and Constraints . 3

2.2 Some Simple Programs . 6

2.3 The Type Issue . 8

3 Programming in CLP(R) 10

3.1 Preliminaries . 10

3.2 Delay of Nonlinear Constraints . 12

3.3 The CLP(R) Operational Model . 13

3.4 Meta–programming . 15

3.4.1 quote/1 and eval/1 . 15

3.4.2 rule/2, retract/1 and assert/1 18

3.5 Output . 20

3.5.1 Outline of Algorithm . 21

3.5.2 The dump System Predicates . 23

3.6 Some Programming Techniques . 25

i

CONTENTS ii

4 Using the System 31

4.1 Command Line Arguments . 32

4.2 Filenames . 32

4.3 Queries . 33

4.4 Loading/consulting and reconsulting programs 33

4.5 Style Checking and Warnings . 34

4.6 Sample Session . 35

4.7 Organization of Consulted Files . 40

4.8 Static and Dynamic Code . 41

4.9 Debugging Support . 42

4.10 Notes on Efficiency . 43

4.11 Notes on Formal Correctness . 44

5 Built-In Facilities 45

5.1 System Predicates . 45

5.1.1 Rulebase . 45

5.1.2 Control . 47

5.1.3 Meta Level . 48

5.1.4 Input/Output . 50

5.1.5 Unix-Related Facilities . 52

5.1.6 Miscellaneous Facilities . 53

5.1.7 Special Facilities . 54

5.2 Nonlinear and Delayed Constraints . 56

5.3 Pre-Defined Operators . 57

CONTENTS iii

6 Installation Guide 58

6.1 Portability . 58

6.1.1 Pre-defined Installation Options . 58

6.1.2 Customized Installation . 60

6.2 Basic Configuration . 61

7 Bug Reports and Other Comments 62

A Differences from the Monash Interpreter 69

Chapter 1

Introduction

This manual describes CLP(R) version 1.2, and at a number of places throughout this text
changebars have been placed either to indicate new features in version 1.2 from version 1.1 or
some changes in the manual. The CLP(R) language is an instance of the Constraint Logic
Programming scheme defined by Jaffar and Lassez [10]. Its operational model is similar
to that of PROLOG. A major difference is that unification is replaced by a more general
mechanism: solving constraints in the domain of uninterpreted functors over real arithmetic
terms. A working knowledge of PROLOG programming is assumed in this document; the
book by Sterling and Shapiro [20] can serve as a suitable introductory text. Further technical
information on CLP(R) is available on language design and implementation [12, 13], meta-
programming [7] and delay mechanisms [14]. Additionally, much has been written about
applications in electrical engineering [6, 18], differential equations [5, 8], temporal reasoning
[1, 2, 3], protocol testing [4], structural analysis and synthesis [15], mechanical engineering
[21], user interfaces [23], model-based diagnosis [24], options trading [16], music theory [9],
molecular biology [22], etc.

This document is both an introductory tutorial and reference manual describing the
compiler-based implementation of CLP(R). The reader experienced with PROLOG or
CLP(R) may wish to skip to Chapter 4, and in particular, see the sample session in Section
4.6 to get started quickly. Compiled CLP(R) is an interactive system that compiles all pro-
grams and goals into CLAM code which is interpreted by a byte-code emulator that is part
of the system. The system is portable in the sense that it will run on virtually all 32 bit
UNIXTM machines with a reasonably standard C compiler, as well as many others.

We would like to emphasize that this manual describes a constantly-evolving, experi-
mental system. Hence much of what is described is subject to change in future releases.
Furthermore, the use of undocumented features is particularly dangerous.

Finally, we adopt some standard notational conventions, such as the name/arity conven-

1

CHAPTER 1. INTRODUCTION 2

tion for describing predicates and functors, + for input arguments, - for output arguments,
and ? for arguments that may be either input or output.

Chapter 2

Syntax and Simple Examples

A CLP(R) program is a collection of rules. The definition of a rule is similar to that of a
PROLOG clause, but it differs in two important ways: rules can contain constraints as well
as atoms in the body, and the definition of terms is more general. A goal is a rule without
a head, as usual.

The body of a rule may contain any number of arithmetic constraints, separated by
commas in the usual way. Constraints are equations or inequalities, built up from real
constants, variables, +, -, *, /, and =, >=, <=, >, < where all of these symbols have the
usual meanings and parentheses may be used in the usual way to resolve ambiguity. Unary
arithmetic negation is also available, as are some special interpreted function symbols which
will be described later. Any variable that appears in an arithmetic constraint is said to be
an arithmetic variable, and cannot take a non-arithmetic value. These constraints may be
thought of as built-in predicates written infix, but they are really much more powerful, as
we shall see later. Goals are also similar to those in PROLOG, and may contain explicit
constraints as well.

Comments in the program are either in the PROLOG style, beginning with a “%” and
continuing to the end of the line, or also in the form of C style comments, starting with “/*”
and ending with “*/” (comments can contain newlines). Unlike normal C comments, these
can be nested so that code already containing comments can be commented easily.

2.1 Terms and Constraints

Syntactically, a term is either a simple term or a compound term constructed from simple
terms. A term is then either an arithmetic term or a functor term. The simple terms are:

3

CHAPTER 2. SYNTAX AND SIMPLE EXAMPLES 4

• Variable terms
A variable is a sequence of alphanumeric characters (including “ ”), either begins with
an uppercase alphabetic character or an underscore “ ”. Variables consisting of an
underscore only are anonymous variables and always represent a new variable. Vari-
ables that are longer than one character and begin with an underscore are the same
as any other ordinary variable,1 except that they are ignored for the purposes of style
checking.

• Numeric constant terms
This is a real number with an optional decimal point and optional integer exponent
which may be positive or negative.

• Symbolic numeric constants
These denote special constant values, eg. π and have the syntax #< name > where
the name is just an atomic functor constant. The following are the special constants
defined by default:

#p π = 3.14159265358979323846
#p 2 π/2 = 1.57079632679489661923
#p 4 π/4 = 0.78539816339744830962
#e e = 2.7182818284590452354

#sqrt2
√

2 = 1.41421356237309504880

#sqrt1 2 1/
√

2 = 0.70710678118654752440
#c c = 2.99792458 ∗ 108 (speed of light in vacumn)
#g g = 9.80665 (acceleration of gravity)
#h h = 6.626176 ∗ 10−34 (Planck’s constant)
#ec 1.6021892 ∗ 10−19 (elementary charge)

There are also some handy metric conversion ratios predefined:

#cm2in 0.393701 (centimeters to inches)
#km2mile 0.62137 (kilometers to miles)
#gm2oz 0.03527 (grams to ounces)
#kg2lb 2.20462 (kilograms to pounds)
#l2gal 0.21998 (litres to imperial gallons)
#l2usgal 0.26418 (litres to US gallons)

(Note that new constants can be created by using new constant/2.)

• functor constant terms
These are either a sequence of alphanumeric characters (including “ ”, starting with a
lowercase letter; or a sequence of characters from the set,{

&*+-./:;<=>?@^~
}

1These are not anonymous variables.

CHAPTER 2. SYNTAX AND SIMPLE EXAMPLES 5

Also any sequence of characters delimited by single quotes “’” is allowed, e.g. ’foo +

bar’ is a functor constant (atom) with that name including the blanks. The special
constant “[]” denotes the empty list or nil. Note also that the special arithmetic
function symbols, though having the same syntax, are arithmetic terms and not functor
terms.

• String constant terms
This is any sequence of characters delimited by double quotes ("). NOTE: At present
the interpretation of strings in the syntax has not been finalized and all strings are
being treated as functor constants (i.e. the single quote form). This differs from some
PROLOG’s which use this syntax as an alternative notation for lists.

An arithmetic term is either a variable, numeric constant or a compound term built up
from arithmetic terms in the usual way using the arithmetic function symbols: +, -, *, /,
sin, arcsin, cos, arccos, pow, abs, min and max. For example,

X

3.14159

42e-8

X + Y

sin(X + 2.0)

(X + Y) / 4

are all valid arithmetic terms. However,

f(a)

c + 5.0

cos(f(3))

are not. The arithmetic terms are interpreted as having their usual meaning as arithmetic
expressions. Operator precedences for the arithmetic function symbols follow the normal
convention2. Parentheses can be also used to escape the application of the default operator
precedences.

Functor terms are either variable or functor constant terms or compound terms. A com-
pound functor term has the form f(t1, t2, · · · , tN) where N ≥ 0, f is an N -ary uninterpreted
functor and t1, t2, · · · , tN are (not necessarily functor) terms. The functor is uninterpreted,
meaning that the functor is simply to be treated as a symbolic constant, as opposed to
the arithmetic terms, which are interpreted. The allowable syntax of the functor symbol f
is that of any functor constant term. The other compound functor terms are lists, which
are specified using the usual PROLOG list notation ([L]), for example “[a, b]”. A dot
notation for lists, as in “a.b.[]”, may also be used. For example, the following are valid

2User defined unary or binary operators in the standard PROLOG fashion using op/3 are also supported.

CHAPTER 2. SYNTAX AND SIMPLE EXAMPLES 6

terms:

[a, 1+X]

f([3.12, g(a)])

f(c)

f(X)

f(3.14159)

g(22, h(4))

f(X + 3)

A constraint is either an arithmetic constraint or a functor constraint. The former is
defined to be of the the form t1 ∆ t2 where t1 and t2 are arithmetic terms and ∆ is one of
the arithmetic relations =, >=, <=, >, and <. For example,

X > 5.0

X + Y + Z = 3

X <= Y

X = V

3 = sin(X)

1.234 + X < Y

are all valid arithmetic constraints, while the following are not.

c > Y

X = 3.0 < Y

pow(X = Y, 3)

4 < X < 5

A functor constraint is of the form t1 = t2 where each of t1 and t2 is either a variable or a
functor term. We shall sometimes refer to a functor constraint as a functor equation below.

2.2 Some Simple Programs

Now we will look at some example programs without considering the details of their execu-
tion. The first example is a program expressing the relation fib(N, X) where X is the Nth
Fibonacci number.

CHAPTER 2. SYNTAX AND SIMPLE EXAMPLES 7

fib(0, 1).

fib(1, 1).

fib(N, X1 + X2) :-

N > 1,

fib(N - 1, X1),

fib(N - 2, X2).

To compute the 10th Fibonacci number, we can use the goal

?- fib(10, Z).

while to find out which Fibonacci number is 89, we can use the goal

?- fib(X, 89).

The next program describes the relationship between two complex numbers and their prod-
uct. We will represent the complex number X + iY as the term c(X, Y).

zmul(c(R1, I1), c(R2, I2), c(R3, I3)) :-

R3 = R1 * R2 - I1 * I2 ,

I3 = R1 * I2 + R2 * I1 .

Any of the following goals will return a unique answer. The first goal asks for the product
of two complex numbers, while the other two ask for the result when one complex number
is divided by another.

?- zmul(c(1, 1), c(2, 2), Z).

?- zmul(c(1, 1), Y, c(0, 4)).

?- zmul(X, c(2, 2), c(0, 4)).

Notice how both operations are described using the definition of complex multiplication,
rather than writing a separate rule that divides complex numbers by first realizing the
divisor and then multiplying. This declarative aspect will be an important feature of many
of the programs we look at. Also notice that both of the programs we have seen so far have
been invertible in the sense that it did not matter which terms in the goals were ground and
which were not. This is a property that we will try to obtain as often as possible when we
define programs or parts of programs. As a further example, the special pow function can
be used to compute powers, roots and logarithms of an arbitrary base. The rules below for
square root,

sqroot(X, pow(X, 0.5)):-

X >= 0.

sqroot(X, -pow(X, 0.5)) :-

X >= 0.

CHAPTER 2. SYNTAX AND SIMPLE EXAMPLES 8

state that a non-negative number has a positive and negative square root. Finally consider
the following program, which relates the key parameters in a mortgage.

mortgage(P, Time, IntRate, Bal, MP) :-

Time > 0, Time <= 1,

Bal = P * (1 + Time * IntRate/1200) - Time * MP.

mortgage(P, Time, IntRate, Bal, MP) :-

Time > 1,

mortgage(P*(1 + IntRate/1200) - MP, Time-1, IntRate, Bal, MP).

The parameters above are principal, life of the mortgage (in months), annual interest rate (%)
which is compounded monthly, the monthly payment, and finally, the outstanding balance.
The goal

?- mortgage(100000, 180, 12, 0, MP).

asks the straightforward query as to how much it would cost to finance a $100,000 mortgage
at 12 percent for 15 years, and the answer obtained is MP = 1200.17. We can ask the
question backwards:

?- mortgage(P, 180, 12, 0, 1200.17).

to obtain the expected answer P = 100000, or ask for how long a mortgage is needed:

?- mortgage(100000, Time, 12, Bal, 1300).

Here we get the answer Time = 147.365. The main point of this example, however, is that
we can ask, not for the values of, but for the relationship between P, MP and Bal. For example,

?- mortgage(P, 180, 12, Bal, MP).

gives the answer

P = 0.166783 * Bal + 83.3217 * MP

This particular example illustrates how answer constraints may be viewed as a partial eval-
uation of the program. In this case, the equation above is the result of partially evaluating
the program with respect to Time = 180 and I = 12.

2.3 The Type Issue

Informally, one of the two types in CLP(R) is given by the real numbers, and the other by
the remaining ground (variable-free) terms. Strictly speaking, CLP(R) is a statically typed

CHAPTER 2. SYNTAX AND SIMPLE EXAMPLES 9

language in the sense that variables, uninterpreted functors and predicates in a program
must be used in a consistent way with respect to their type. That is, each variable and
each argument of every predicate and uninterpreted functor is first acknowledged to be of
a certain type. The program is then considered to be ill-typed if, for example, a variable
appears both in a functor constraint and an arithmetic constraint; similarly, the program is
ill-typed if one occurrence of a predicate or uninterpreted functor has a number in the first
argument while, in another occurrence, it has a functor term in the first argument.

For programming convenience, however, CLP(R) does not perform such type-checking at
compile time. This decision is based on the fact that it is often useful to overload a symbol;
for example, one may want a database p of both numbers and letters:

p(1).

p(2).

p(a).

p(b).

and one may run a goal containing p(X) and some constraints used for selection within the
database. Note that by not performing type-checking, one can have a runtime type error.
That is, an execution sequence which fails because of a “type clash”. Often such failures
indicate that there is an error in the program. The CLP(R) system will not distinguish such
failures from failures obtained from well-typed constraints.

A straightforward way of thinking about the type issue when writing CLP(R) programs
is that whenever an arithmetic term appears in a rule, for each variable X therein, we can
implicitly add a corresponding atom real(X) to the body of the rule. The system predicate
real/1 is true just in case there is a real solution for X in the context of the current collection
of constraints.

Chapter 3

Programming in CLP(R)

3.1 Preliminaries

Before we can look at more advanced programming examples, it is necessary to have some
idea of how the programs are executed. This is similar in flavor to the way PROLOG
programs are executed, but the basic operational step of unifying an atom with the head of
a rule is replaced by something more general. In this preliminary section, we assume that
all arithmetic constraints are linear; the general case is discussed in a later section.

The computation begins with a goal and an initially empty set of collected constraints.
The usual left-right atom selection rule is used to select either an arithmetic constraint or
an atom at each stage. When a constraint is selected, it is added to the set of collected
constraints, and it is determined whether the resulting set has a solution. If there is no
solution, backtracking takes place in the usual way. On the other hand, when an atom is
selected, the set of rules is searched in the usual top-down fashion, each time matching that
atom with the head of some rule. Such a match is realized by an equation between these
two atoms; such an equation is treated like any equation between terms.

As before, it is required that the system of constraints collected so far has a solution. In
general, solving this equation proceeds at first by unifying the syntactic parts of the terms
in the usual way. However, these terms may contain arithmetic terms. As arithmetic terms
have a special meaning, they are not unified syntactically, but rather an equation between
them is solved in the domain of real arithmetic.

Let us consider some examples. We start with a program that has no explicit constraints
or arithmetic terms, effectively written in PROLOG.

10

CHAPTER 3. PROGRAMMING IN CLP(R) 11

p(f(c)).

q(g(X)) :-

p(f(X)).

?- q(Y).

As the computation proceeds, the collected constraint set and current goal are as follows:

{} ?- q(Y).

{q(Y) = q(g(X)) } ?- p(f(X)).

{q(Y) = q(g(X)), p(f(X)) = p(f(c)) } ?- .

Note that only one successful path is shown here. Also, as we will discuss in more detail
later, the “answer” to this query is just the set of constraints collected, but “projected” onto
the goal variables, in this case Y. So the answer to the above query is

Y = g(c).

Now consider a program that includes both arithmetic terms and explicit constraints:

p(10, 10).

q(W, c(U, V)) :-

W - U + V = 10,

p(U, V).

?- q(Z, c(X + Y, X - Y)).

and again we only look at one successful path of the execution:

{} ?- q(Z, c(X + Y, X - Y)).

{q(Z, c(X + Y, X - Y)) = q(W, c(U, V)) } ?- W - U + V = 10, p(U, V).

{q(Z, c(X + Y, X - Y)) = q(W, c(U, V)), W - U + V = 10 } ?- p(U, V).

{· · · , p(U,V) = p(10, 10) } ?- .

The answer for this derivation is

Y = 0, X = 10, Z = 10.

and we should notice that, as expected, it does not contain any mention of the variables U,
V, and W. Also note that, in general, the answers need not give values to variables, and it
is possible to get an answer constraint like

X + Y + Z = 0, X > Y.

This facility is a very important and useful feature of CLP(R) as we will illustrate later.

CHAPTER 3. PROGRAMMING IN CLP(R) 12

3.2 Delay of Nonlinear Constraints

In the above discussion of the operational model, we saw how each operational step results
in one or more constraints being added to the collected constraint set, and the new set
being checked for satisfiability. Because of efficiency requirements, there is a limit to how
sophisticated the decision algorithm for constraints can be, and consequently the collected
constraint set may get too complicated for the decision algorithm. In particular, consider
a case when the collected constraint set is solvable, but one constraint is added that makes
the set so complicated that it is not practical to decide whether it has remained solvable.

A naive approach to dealing with this problem is simply to disallow expressions that
can result in such complexity. This is tantamount to disallowing all nonlinear constraints.
The loss in expressive power is, however, unacceptable. Instead, CLP(R) allows nonlinear
constraints but keeps them in a delayed constraint set. More precisely, at each operational
step, instead of blindly adding each constraint to the collected constraint set and incurring
the cost of performing a satisfiability test, we remove certain constraints that would make
the set too complicated. We keep these removed constraints in the delayed constraint set.
Additionally, at each step it is possible that some constraint in the delayed constraint set
need no longer be delayed because of new information. In this case it should be moved from
the delayed constraint set to the collected constraint set and the usual solvability check made.
Note that, in general, the notion of which expressions are “too complicated” is dependent
on the implementation. In CLP(R) only the nonlinear constraints are delayed.

Now let us consider an example where the collected constraint set is initially empty; then
suppose we obtain the constraint

V = I * R.

This is placed in the delayed constraint set. Continuing, if the next constraint is

V = 10

it may be added to the collected constraint set, but note that it is still not easy to decide
whether the two constraints together are solvable Now consider what happens if the next
constraint is

R = 5.

This gives us enough information to make the delayed constraint linear, so we simply remove
this constraint from the delayed constraint set, place it in the collected constraint set, and
check that it is solvable, which of course it is. Note that the delayed constraint set may
have contained other constraints, which may have to remain there until much later. Also
note that because of this delay mechanism, we may continue through a certain computation

CHAPTER 3. PROGRAMMING IN CLP(R) 13

sequence even though the collected and delayed constraint sets together are not solvable.
In the worst case it can result in an infinite loop. This is the price we pay for an efficient
decision algorithm.

As we have already stated, in the CLP(R) system a linear equation or inequality is always
considered to be sufficiently simple to be solved immediately, but nonlinear constraints are
delayed until they become linear. This includes the functions sin/1, arcsin/1, cos/1,
arccos/1, pow/2, max/2, min/2 and abs/1 which are delayed until they become simple
evaluations in one direction or another. This means that sin and cos require the input to
be ground, while pow requires at least two out of three arguments to be ground, except in
cases such as

X = pow(Y, Z)

where Z = 0. The reason is that Y 0 is defined to be 1 for all values of Y. Note that while this
is sufficient to determine the value of X, Y remains non-ground. There are similar special
cases when Z is 1, and when Y is 0 or 1. The functions arcsin and arccos are delayed until
either the input is ground or the result of the function is ground. They are also different
in that they are functions and the input domain for arcsin ranges from −π/2 to π/2 and
arccos from 0 to π whereas sin and cos are defined for any number in radians. Thus
sin and cos behave as relations which is non-invertible while arcsin and arccos are true
functions which are invertible. See Section 5.2 for a more precise definition of the delaying
conditions for the different nonlinear functions.

As a final example, consider the mortgage program in Chapter 2, and consider the goal:

?- mortgage(120, 2, IR, 0, 80).

This will give rise to nonlinear constraints, and the system returns a quadratic equation as
the answer constraint:

80 = (0.1*IR + 40) * (0.000833333*IR + 1)

and indicates that this is an unsolved answer. Note that while CLP(R) cannot determine
whether this equation is solvable, the equation indeed describes the correct answer.

3.3 The CLP(R) Operational Model

We now precisely but informally define the operational model of CLP(R). A goal G is writ-
ten in the form C, D ?- E where C is a satisfiable collection of constraints, D a collection
of nonlinear constraints called the delayed constraints, and E a sequence of atoms and con-
straints. In what follows, we define how such a goal is reduced into another in the context

CHAPTER 3. PROGRAMMING IN CLP(R) 14

of an ongoing derivation.

In reducing a goal C, D ?- E, CLP(R) either selects an element from E, call this a
forward reduction, or selects a constraint from D, call this a wakeup reduction. Initially, C
and D are empty, and CLP(R) attempts to make a forward reduction.

Forward reductions

If E is empty, then we say that the goal is terminal, and no more reduction of the goal
is possible. If D is also empty, then the derivation is successful; otherwise, the derivation is
conditionally successful (depending on the nonlinear constraints).

Now consider the case where E is nonempty; let E0 denote the first element of E and let
E2 denote the remaining subsequence of E.

If E0 is an atom, then E0 will be selected for atom reduction in the manner described
above. First, an appropriate program rule will be selected. The atom and rule head will
then be matched, giving rise to a collection of constraints, which we will write as M1 & M2

where M1 consists only of linear constraints and M2 only of nonlinear ones. The new goal
consists of (a) C & M1 in its first component; (b) D & M2 in its second component, and (c)
the body of the rule and E2, sequenced in this order, in its third component.

If E0 is a linear constraint, then the reduced goal is C & E0, D ?- E2 providing C & E0

is satisfiable; otherwise there is no reduced goal and the derivation is finitely failed.

Finally, if E0 is a nonlinear constraint, then the reduced goal is C, D & E0 ?- E2. That
is, the constraint E0 is simply delayed.

Wakeup reductions

Let the goal at hand be C, D ?- E. This reduction step starts by considering whether
there is a delayed constraint D0 in D which is in fact linear. That is, C implies that D0 is
equivalent to a linear constraint. If there is no such delayed constraint, then no reduction is
performed.

Otherwise, consider the case in which C is inconsistent with this linear constraint. Here
reduction is not possible and a finitely failed derivation is obtained. However, if C is consistent
with the linear constraint, then the reduced goal is C & D0, D2 ?- E where D2 is result of
deleting D0 from D.

CHAPTER 3. PROGRAMMING IN CLP(R) 15

3.4 Meta–programming

In the context of Prolog, meta–programming refers to the destruction and construction of
rules and terms, and the examination and modification of the rulebase. All of the same
issues arise in CLP(R). However, some extra facilities are needed because of the special
nature of arithmetic terms and constraints. Furthermore, some of the remaining ones must
be modified. For example, without such extra facilities and modifications, there is no way
that a CLP(R) program can distinguish the two terms p(3 - 1) and p(1 + 1) since they
are semantically identical.

More specifically, the extra facilities and modifications are needed to:

• make arithmetic terms be interpreted syntactically, by introducing a coded form;

• convert coded forms of arithmetic terms into the appropriate arithmetic terms;

• obtain a coded form of [some projection of] the current constraint set;

• add appropriate constraints to asserted rules;

• examine the rulebase completely syntactically.

3.4.1 quote/1 and eval/1

First we introduce the macro-like operator quote/1. This is expanded in an outer-most first
fashion when expressions are first read. The argument of the quote operator is translated
to a version in which all arithmetic operators are translated to a special coded form, which
is not otherwise directly accessible to the programmer. This coded form can then be treated
like a functor term. In this discussion, such coded forms of arithmetic function symbols will
be be represented with a caret over them. For example, the rule

p(X, Y, quote(X + Y)).

would be read in as

p(X, Y, X +̂ Y).

and so on. Furthermore, the quote operator passes through all other function symbols,
constants, variables etc. without changing them. Thus for example, the rule

q(X,Y) :- X = quote(f(g(Y), 2 * Y)).

becomes

CHAPTER 3. PROGRAMMING IN CLP(R) 16

q(X,Y) :- X = f(g(Y), 2 *̂ Y).

Of course, the original form of the rule is always shown when listing the database, etc., but
when printing a term, coded function symbols are printed preceded by a caret1. For example,
the query ?- q(X, 5). to the above rule would yield the answer X = f(g(5), 2 ^* 5).
Note that that the caret form of coded terms cannot be input directly, but only through
the use of quote. Additionally, to facilitate manipulating programs which themselves use
meta-programming facilities, we need coded forms of the quote operator itself, as well as the
new eval interpreted function symbol, which will be described below. This is why quote is
expanded outer-most first. For example,

P = quote(p(quote(X + Y), X + Y)) expands to
P = p(̂quote (X +̂ Y), X +̂ Y)).

Thus an occurrence of quote that appears within the scope of another quote will be trans-
lated to ̂quote , and will not be quote-expanded. The eval interpreted function can be
coded by using quote as well, for example,

X = quote(eval(1 + 2)) gives
X = êval (1 +̂ 2).

Now, the major linguistic feature for meta–programming with constraints is the inter-
preted function symbol eval which converts a coded term to the term it codes. It passes
through uninterpreted function symbols, other than those that are coded forms of interpreted
ones, without changing them. Likewise for constants and interpreted function symbols. Some
examples:

X = 1 +̂ 2, U = eval(X) implies
U = 3.

X = Y +̂ Z, U = eval(X) implies
U = eval(Y) + eval(Z).

X = Y +̂ Z, U = eval(X), Y = 1, Z = 2 implies
U = 3.

The function eval has no effect on uninterpreted functors. For example, the goal

?- X = f(a, g(c)), U = eval(X).

results in both U and X being f(a, g(c)). However,

?- X = f(Y, g(c)), U = eval(X).

results in U being f(eval(Y), g(c)), as the “best” representation of terms containing eval

1In this manual, we take the liberty of placing the caret as an accent for readability

CHAPTER 3. PROGRAMMING IN CLP(R) 17

is that with eval pushed inwards as far as possible.

Formally, the meaning of quote and eval are given by the axioms:

eval(f̂ (t1, · · · , tn)) = f(eval(t1), · · · , eval(tn)), n ≥ 0
eval(g(t1, · · · , tn)) = g(eval(t1), · · · , eval(tn)), n ≥ 0
eval(̂quote(t)) = t

where f ranges over all arithmetic function symbols, g ranges over all uncoded function
symbols different from eval, and t, t1, · · · , tn range over terms.

In general, deciding the satisfiability of constraints involving quote and eval is a non-
trivial problem. Consider for example the two equations:

f(eval2(x), eval2(y)) = f(̂quote(eval4(y)), ̂quote(eval3(x)))
f(eval3(x), eval4(y)) = f(̂quote(eval2(y)), ̂quote(eval2(x)))

The first of these constraints is solvable, while the second is not. There is in fact an algorithm
to deal with such constraints in their full generality. However, for efficiency reasons, CLP(R)
implements a partial algorithm: maintaining constraints so that eval appears only in the
form X = eval(Y), these equations are delayed until the argument of eval is constructed.
In fact, the delay of such eval equations is implemented in much the same way as nonlinear
equations.

For example, consider the goal

?- X = quote(U + 1), eval(X) = 5, Y = eval(U) - 5.

After the first constraint, X is equal to U +̂ 1, but after the second constraint, eval goes
as far through X as it can, so we obtain the simplified constraint eval(U) + 1 = 5, which
is further simplified to eval(U) = 4. Hence the third constraint results in Y being -1.

However, if the goal were permuted to

?- eval(X) = 5, Y = eval(U) - 5, X = quote(U + 1).

the first and second constraints both result in delayed eval constraints. The third constraint
wakes the first delayed eval since X is now constructed, resulting in the constraint eval(U)
+ 1 = 5 again, which, together with the second delayed eval constraint — which is not
awakened — results in Y being grounded to -1 again.

As a final example, consider the goal

CHAPTER 3. PROGRAMMING IN CLP(R) 18

?- eval(X) + eval(Y) = 4, eval(X) - eval(Y) = 1.

which is rather silly in isolation, but could arise as the result of a longer computation. In
this case, the answer constraints are eval(X) = 2.5, eval(Y) = 1.5 although the values
of X and Y cannot be determined uniquely. For example, X might be 2.5, or 1 +̂ 1.5,
etc. It should be noted that the eval mechanism described here is an approximation to that
proposed in [7].

3.4.2 rule/2, retract/1 and assert/1

Next we consider how these basic facilities may be used for reasoning about programs (see
also Section 4.8 which describes how to use the dynamic code facilities). The canonical
application for such reasoning is the meta-circular interpreter, discussed in detail in [7]. Like
the clause/2 predicate of Prolog, we require a system predicate rule/2 such that the goal ?-
rule(H, B) behaves as if there were facts rule(E, F) for each rule E :- F in the program
(and of course rule(A, true) for each fact A).

There is, however, one aspect of rule which has no analog in clause: arithmetic func-
tion symbols will become coded. More precisely, the system predicate rule behaves as
if there were facts rule(quote(E), quote(F)) for each rule E :- F in the rulebase (and
rule(quote(A), true) for each fact A). We note that a direct analog to clause can be
written in terms of rule:

analog to clause(H, B) :-

functor(H, Name, Arity),

functor(H1, Name, Arity), % rule needs a constructed head

eval(H) = eval(H1),

rule(H1, eval(B)).

In a similar fashion, the CLP(R) system predicate retract/1 is like that in PROLOG but
differs in that one matches arithmetic function symbols with their coded forms. As before,
a direct analog to the PROLOG’s retract can be written as follows:

analog to retract(eval(R)) :-

functor(R, Name, Arity),

functor(R1, Name, Arity), % retract needs a constructed argument

eval(R) = eval(R1),

retract(R1).

Now consider the following example program:

CHAPTER 3. PROGRAMMING IN CLP(R) 19

(a) p(1, 1.5).

(b) p(X, Y) :- Y = 2 * X.

(c) p(X, 2 * X).

(d) p(X, 2 + X).

The goal ?- retract(quote(p(X, 2*X))) removes only the rule (c). The goal

?- analog to retract(p(X, 2*X))

on the other hand, should remove rules (c) and (d).

As explained in [7], assert/1 in CLP(R) differs from that in PROLOG not just because
of term codings; additional constraints may have to be added to the asserted rule. For
example,

?- X + Y > 2, assert(p(X, Y)).

results in the rule

p(X, Y) :- X + Y > 2.

As another example, the goal:

?- X + Y = 2, X >= 0, Y - 2*X <= 2, X > W, Y - X >= 1,

assert(p(X, Y)).

asserts the rule:

p(X, Y) :- Y = -X + 2, X <= 0.5, -X <= 0.

Note that a considerable simplification of the initial constraints has occurred. More gener-
ally, this supports a technique of constraint partial evaluation. This technique consists of
executing a query, and then using the simplified form of the answer constraints to construct
new rules. These new rules represent a specialization of the program with respect to that
query. For example:

resistor(V, I, R) :- V = I * R.

?- resistor(V, I1, R1), resistor(V, I2, R2),

I = I1 + I2,

assert(parallel resistors(V, I, R1, R2)).

results in the assertion of a rule describing the equivalent voltage-current relationship of a
pair of resistors connected in parallel2:

2The actual names of variables in the rule being asserted will be internally constructed names but we will
use the original ones for clarity

CHAPTER 3. PROGRAMMING IN CLP(R) 20

parallel resistors(V, I, R1, R2) :-

V = I2 * R2,

V = (I - I2) * R1.

The facilities we have discussed for adding rules to the database have provided no control
over the exact syntax of the rule added. For example constraints may be simplified and/or
rearranged before the rule is added. It is particularly important in some applications to have
complete control over the syntax of rules added to the database. This control is provided by
using a coded form of the rule to be asserted, where assert of a coded rule is defined to
add the rule that is coded. For example, the goal

?- assert(quote(p(X, X + X) :- X - 3 > 0)).

asserts the rule

p(X, X + X) :- X - 3 > 0.

In contrast, the goal

?- assert(p(X, X + X) :- X - 3 > 0).

could, for example, add the (semantically equivalent) rule:

p(X, Y) :- Y = 2*X, Z = X - 3, Z > 0.

3.5 Output

An important feature of the CLP(R) system is its ability to output the collected constraints
of a successful derivation in a simpler form. In a typical derivation, thousands of constraints
may be collected, and printing them out without simplification would lead to an unusable
answer. When a derivation succeeds the output module of CLP(R) is invoked to print the
constraints relating the variables in the goal. The module can also be invoked using the
system predicate dump([X,Y,...,Z]), discussed later.

The CLP(R) system attempts to simplify the constraints in two ways: by projecting the
constraints onto a set of target variables (those appearing in the original goal or given by the
user in the argument of dump), and by eliminating redundancy in the constraints. Ideally
the output constraints will only involve target variables and be free of redundancy, but this
will not always be possible.

Recall that there are constraints of four different forms:

CHAPTER 3. PROGRAMMING IN CLP(R) 21

• functor constraints, e.g. X = f(Y, a, g(Y))

• linear equations, e.g. 3*X + 4*Y = 6

• linear inequalities, e.g. 3*X > 4 + Y

• non-linear equations, e.g. X = Y * Z, T = pow(U, V), U = eval(V)3

Each of these constraint types is handled differently and in turn.

3.5.1 Outline of Algorithm

In this section, we outline how the output is obtained to give a flavor of the kinds of simpli-
fications and reductions that are possible in the answer constraints.

Functor equations are handled first, and in much the same way as in PROLOG. The
constraints are stored in solved form using bindings, and printing the simplest form of each
target variable simply involves printing their term representation. For example

?- X = f(Y, Z), Z = g(a, Y), dump([X, Y]).

results in the output

X = f(Y, g(a, Y)).

Note that there is no equation for Y since it is its own term representation. With functor
equations, it is not always possible to present the output in terms of target variables alone,
and some non-target variables are printed out using an internal name. For example,

?- X = f(Y, Z), Z = g(a, Y), dump([X]).

results in an output such as

X = f(h6, g(a, h6)).

Linear equations are used to substitute out non-target variables in the following manner. If E
is a linear equation containing non-target variable X, then we rewrite E into the form X = t
and substitute t for X in all the other constraints (including functor equations, inequalities
and non-linear equations). Consider, for example

?- T = 3 + Y, X = 2 * Y + U, Z = 3 * U + Y, dump([X, T, Z]).

3Delayed constraints involving eval are treated like nonlinears.

CHAPTER 3. PROGRAMMING IN CLP(R) 22

First, we eliminate Y using the first equation Y = 3− T and obtain

X = 2 * T - 6 + U, Z = 3 * U + T - 3.

Then we eliminate U using the the first equation and obtain

Z = 3*X - 5*T + 15.

This is the final answer since only the variables X, T and Z remain.

Linear inequalities are more difficult to handle than linear equations. We will not go into
the details of how variables can be eliminated from inequalities except to mention that a
variation of Fourier-Motzkin elimination [19] with some improvements is used (see [11] for
more details). In general, eliminating variables from inequalities can be expensive and the
projection can contain an exponential number of inequalities.

We finally deal with the nonlinear equations. In general, the algorithm here simply
outputs each nonlinear equation unless it has been used as a substitution. We will not define
formally what exactly constitutes a substitution, but will discuss some examples. Recall
that each non-linear constraint takes the form X = Y ∗ Z, X = sin(Y), X = cos(Y), X =
pow(Y, Z), X = max(Y, Z), X = min(Y, Z) or X = abs(Y). Each of these equations can
be used to substitute for X if X is a non-target variable. For example,

?- Y = sin(X), Y = cos(Z), dump([X,Z]).

leads to the output

sin(X) = cos(Z).

As in the case for functor equations, we cannot in practice eliminate all non-target variables
appearing in non-linear constraints. As before, we display any non-target variable using an
internal name.

A Complete Example

Consider the goal

?- X = f(V, M), V = a, N = 2 * T, Y = 4 * T, Z = R + T, M = N * R,

Y + Z >= U, U > T, U >= R + N,

dump([X, Y, Z]).

First we eliminate V by substitution obtaining

X = f(a, M), N = 2 * T, Y = 4 * T, Z = R + T, M = N * R,

Y + Z >= U, U > T, U >= R + N

CHAPTER 3. PROGRAMMING IN CLP(R) 23

Next we eliminate N using the second constraint obtaining

X = f(a, M), Y = 4 * T, Z = R + T, M = (2 * T) * R,

Y + Z >= U, U > T, U >= R + 2 * T

Next we eliminate T using the second constraint obtaining

X = f(a, M), Z = R + 0.25 * Y, M = (0.5 * Y) * R,

Y + Z >= U, U > 0.25 * Y, U >= R + 0.5 * Y

Next we eliminate R using the second constraint obtaining

X = f(a, M), M = (0.5 * Y) * (Z - 0.25 * Y),

Y + Z >= U, U > 0.25 * Y, U >= Z + 0.25 * Y

Next we eliminate U from the inequalities (and here the individual steps taken may not be
so obvious), obtaining

X = f(a, M), M = (0.5 * Y) * (Z - 0.25 * Y),

0.75 * Y + Z > 0, 0.75 * Y >= 0

Finally, we eliminate M using the second constraint, and as output we obtain (after per-
forming some straightforward scaling) the constraints

X = f(a, (0.5 * Y) * (Z - 0.25 * Y)),

0 < Z + 0.75 * Y,

0 <= Y

We finally remark that we can obtain an empty output using the algorithm just outlined.
This indicates that there are no restrictions on the values that the target variables can take.
For example,

?- T = 3 + Y, X = 2 * Y + U, Z = 3 * U + Y, dump([X, Z]).

results in no constraints at all. In such cases, the distinguished predicate real/1 is then
used to indicate that certain variables are arithmetic, and that no further constraints are
upon them. In this example, we will output the constraints

real(X), real(Z).

3.5.2 The dump System Predicates

The basic facility for output in CLP(R) is the system predicate dump/1, mentioned above,
whose argument is a list of target variables. Note that, to use this predicate, the target

CHAPTER 3. PROGRAMMING IN CLP(R) 24

variables must appear explicitly in the argument (as in dump([A, B])) and not be passed in
(as in X = [A, B], dump(X)). This is because the names of the target variables are actually
used in the output. The ordering of variables in the list is used to specify a priority on the
variables with the later variables having a higher priority. Since dump outputs constraints,
there are many equivalent forms of the same set of constraints and the priority ordering is
used to express higher priority variables in terms of the lower ones. This gives one form of
control over the output from dump. For example, the goal

?- X = 2 * Y + 4, dump([X, Y])

gives Y = 0.5 * X - 2

whereas the reverse order would give back the original constraint.

The predicate dump/2 is a refinement of dump/1, and is designed to be far more flexible.
Its first argument is, as before, a list of target variables. Its second argument is a list of
constants to be used in place of the original target variables in the output. For example,

?- Names = [a, b], Targets = [X, Y], X > Y, dump(Targets, Names).

results in the output a > b. This predicate is useful when the names of target variables
are known only at runtime. More precisely, the operation of dump/2 is as follows: let the
first and second arguments be the lists [t1, · · · , tn] and [u1, · · · , un], where the ti and ui are
arbitrary terms. Construct new variables T1, · · · , Tn, and add to the current collection of
constraints the equations T1 = t1, · · · , Tn = tn. Now obtain a projection of the augmented
constraints w.r.t. T1, · · · , Tn. Finally, output this projection renaming each target variable Ti

by its new name ui.

In meta-programming it can be useful to obtain the coded form of the constraints with
respect to given target variables. This facility is provided by the system predicate dump/3.
There are three arguments because it is not sufficient to simply provide the variables to be
projected upon (1st argument) and the variable that receives the coded form (3rd argument).
The 2nd argument is a list of terms that are to replace the original variables in the coded
form, and hence the lengths of the two lists must be the same. For example,

?- NewVars = [A, B, C], Targets = [X, Y, Z], X > Y + Z,

dump(Targets, NewVars, Answer).

results in the binding Answer = [-̂ A +̂ B +̂ C < 0].

There are two reasons for having such a second argument. First, it is very inconvenient to
manipulate a coded form containing variables that have the original arithmetic constraints
still imposed on them — in particular, printing such a term leads to highly counter-intuitive
results. Second, in many cases it is more convenient to manipulate ground representations
of the coded forms. That is, with syntactic constants replacing the variables. The terms

CHAPTER 3. PROGRAMMING IN CLP(R) 25

resulting from manipulation can then have the original (or other) variables substituted into
place easily.

We conclude with a larger example. We will assume that the predicate p/2 sets up a
constraint such that the first argument is a (polynomial) function of the second, and that
diff/2 implements symbolic differentiation on coded forms of arithmetic constraints. Then,
to find the turning point of the functional relationship established by p/2, we can use the
following goal:

solve(DYDX,X) :- eval(DYDX) = 0.

p(Y, X) :-

T = X + 1,

Y = T * T.

?- p(Y, X), % collect a function Y(X)
dump([Y, X], [V, U], Z), % get coded form of Y(X)
Z = [C], C =.. [’=’, V, RHS], % assume Z of the form [V = f(U)]
diff(RHS, DVDU), % symbolic differentiation
solve(DVDU, U), % find extremum
printf("Turning point: X = %, Y = %\n", [U, V]).

3.6 Some Programming Techniques

Here we collect a number of small programs that serve to illustrate some interesting pro-
gramming techniques.

A Crypto-arithmetic Puzzle

Consider one of the standard crypto-arithmetic puzzles. We require an injective assign-
ment of digits 0, 1, · · · , 9 to the letters S, E, N, D, M, O, R, Y such that the equation

S E N D

+ M O R E

M O N E Y

holds. The program first imposes certain constraints on the values. Then it tries to assign
possible values to the letters. The problem is combinatorially explosive and so a naive gen-
erate and test solution would be very inefficient. In contrast, the straightforward program
below runs quickly in CLP(R).

CHAPTER 3. PROGRAMMING IN CLP(R) 26

The program illustrates how CLP(R) can be used to advantage in solving problems over
integer domains. Because the unsolvability of constraints in R implies their unsolvability
over the integers, CLP(R) can prune the search space significantly without the expense of
invoking an integer solver. For CLP programs in general, the key issue is the trade-off between
the power and the speed of the constraint-solver: powerful solvers entail smaller search spaces
but are costlier to run. For CLP(R) in particular, the use of a real-number-based solver to
approximate constraint-solving over a discrete or finite domain is one important realization
of this trade-off.

solve([S, E, N, D, M, O, R, Y]) :-

constraints([S, E, N, D, M, O, R, Y]),

gen_diff_digits([S, E, N, D, M, O, R, Y]).

constraints([S, E, N, D, M, O, R, Y]) :-

S >= 0, E >= 0, N >= 0, D >= 0, M >= 0, O >= 0, R >= 0, Y >= 0,

S <= 9, E <= 9, N <= 9, D <= 9, M <= 9, O <= 9, R <= 9, Y <= 9,

S >= 1, M >= 1,

C1 >= 0, C2 >= 0, C3 >= 0, C4 >= 0,

C1 <= 1, C2 <= 1, C3 <= 1, C4 <= 1,

M = C1,

C2 + S + M = O + C1 * 10,

C3 + E + O = N + 10 * C2,

C4 + N + R = E + 10 * C3,

D + E = Y + 10*C4,

bit(C1), bit(C2), bit(C3), bit(C4).

bit(0).

bit(1).

gen_diff_digits(L) :-

gen_diff_digits(L, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]).

gen_diff_digits([], _).

gen_diff_digits([H | T], L) :-

select(H, L, L2), gen_diff_digits(T, L2).

select(H, [H | T], T).

select(H, [H2 | T], [H2 | T2]) :-

select(H, T, T2).

?- solve(S, E, N, D, M, O, R, Y).

Critical Path Analysis

CHAPTER 3. PROGRAMMING IN CLP(R) 27

This program uses local propagation to compute start, completion and float times for a
project network. Significantly, the constraint paradigm allows the program to compute these
values by making only one pass of the project network, as opposed to the three passes that
would be needed using a conventional programming language.

Most of the program is basically parsing the input and building an adjacency graph out
of the network. Then the latest completion time and earliest starting time for every node is
simply the minimum of the time required for the outgoing events and maximum of the time
of the incoming events.

cpm(Network, Graph, Latest) :-

build(Network, Graph),

early_late(Graph, Graph, End, Latest),

Latest >= End,

analyse(Graph, Graph).

cpm(Network, Graph) :-

build(Network, Graph),

early_late(Graph, Graph, End),

analyse(Graph, Graph).

% Build adjacency graph out of the network ... build([], Graph) :- ...

% Get early start times and latest completion times

% early/4 is used when a ending time is given

% otherwise early/3 assumes that the early start time

% for the end node is equal to the latest completion time

early_late([], _, _, _).

early_late([ad(I, Es, Lc, To, From) | T], G, End, Latest) :-

setearly(From, To, G, End, Es),

setlate(To, G, Latest, Lc),

early_late(T, G, End, Latest).

early_late([], _, _).

early_late([ad(I, Es, Lc, To, From) | T], G, End) :-

setearly(From, To, G, End, Es),

setlate(To, G, End, Lc),

early_late(T, G, End).

setearly([], _, _, _, 0).

setearly([ed(V, C, _, _, _, _) | T],[], G, Es, Es) :-

CHAPTER 3. PROGRAMMING IN CLP(R) 28

!,

getnode(V, G, Es1, _),

setmax(T, G, Es1 + C, Es).

setearly([ed(V, C, _, _, _, _) | T], _, G, End, Es) :-

getnode(V, G, Es1, _),

setmax(T, G, Es1+C, Es).

setmax([], _, Max, Max).

setmax([ed(V, C, _, _, _, _) | T], G, Max0, Max) :-

getnode(V, G, Es1, _),

setmax(T, G, max(Max0, Es1 + C), Max).

setlate([], _, Last, Last).

setlate([ed(V, C, _, _, _, _) | T], G, Last, Lc) :-

getnode(V, G, _, Lc1),

setmin(T, G, Lc1-C, Lc).

setmin([], _, Min, Min).

setmin([ed(V, C, _, _, _, _) | T], G, Min0, Min) :-

getnode(V, G, _, Lc1),

setmin(T, G, min(Min0, Lc1 - C), Min).

% Search graph for the early & late times for a node

getnode(I,[ad(I, Es, Lc, _, _) | T], Es, Lc).

getnode(I,[H | T], Es, Lc) :-

getnode(I, T, Es, Lc).

% Compute the other times:

% Ls - latest start time

% Ec - earliest completion time

% Tf - total float time

% Ff - free float time

analyse([], G).

analyse([ad(I, Es, Lc, To, _) | T], G) :-

analyse_times(To, Es, Lc, G),

analyse(T, G).

analyse_times([], _, _, _).

analyse_times([ed(V, C, Ls, Ec, Tf, Ff) | T], Esi, Lci, G) :-

getnode(V, G, Esj, Lcj),

X = Esi + C,

CHAPTER 3. PROGRAMMING IN CLP(R) 29

Ls = Lcj - C,

Ec = Esi + C,

Tf = Lcj - X,

Ff = Esj - X,

analyse_times(T, Esi, Lci, G).

print_analysis(G) :- ...

A goal might be

?- cpm([

[n1, n2, 4], [n1, n3, 3], [n1, n4, 4], [n2, n5, 7],

[n2, n3, 1], [n2, n7, 8], [n3, n5, 4], [n4, n6, 2],

[n5, n6, 1], [n5, n7, 3], [n6, n7, 4]], G),

print_analysis(G).

A Simple Circuit Solver

The following program performs DC analysis on circuits containing resistors, voltage
sources and diodes. The circuit analysis is decomposed in a hierarchical fashion. The in-
dividual components are modelled directly by constraints such as Ohm’s law. Then the
components are connected together and the global circuit constraints on the currents and
voltages, as specified by Kirchoff’s laws, are used to define the whole circuit.

solve_dc(C, L) :-

solve(C, [], L),

solve_current(L).

% solve for every circuit component

solve([], L, L).

solve([[Comp, Name, Par, Nodes] | T], In, Out) :-

connect(Name, Nodes, Volts, Amps, In, Tmp),

component(Comp, Par, Volts, Amps),

solve(T, Tmp, Out).

% sum of currents at each node are zero

solve_current([]).

solve_current([n(N, V, IList) | T]) :-

kcl(IList, 0),

CHAPTER 3. PROGRAMMING IN CLP(R) 30

solve_current(T).

kcl([], 0).

kcl([(Name, I) | T], X) :-

kcl(T, I + X).

% connect the arcs which meet at a node

connect(Name, [], [], [], L, L).

connect(Name, [N | T], [V | VR], [I | IR], In, Out) :-

add_arc(Name, N, V, I, In, Tmp),

connecting(Name, T, VR, IR, Tmp, Out).

% create the voltage and currents

add_arc(Name, N, V, I, [], [n(N, V, [(Name, I)])]).

add_arc(Name, N, V, I, [n(N, V, IList) | T],

[n(N, V, [(Name, I) | IList]) | T]).

add_arc(Name, N, V, I, [X | T], [X | T1]) :-

add_arc(Name, N, V, I, T, T1).

component(resistor, R, [V1, V2], [I, -I]) :-

V1 - V2 = I*R.

component(voltage_source, V, [V, 0], [I, -I]).

component(diode, in914, [V1, V2], [I, -I]) :-

diode(in914, [V1, V2], [I, -I]).

diode(in914, [V1, V2], [I1, I2]) :-

V = V1 - V2, V < -100, DV = V+100, I1 = 10*DV - 0.1.

diode(in914, [V1, V2], [I1, I2]) :-

V = V1 - V2, V >= -100, V < 0.6, I1 = 0.001*V.

diode(in914, [V1, V2], [I1, I2]) :-

V = V1 - V2, V >= 0.6, DV = V - 0.6, I1 = 100*DV - 0.0006.

A sample query which returns the currents and voltages in L

?- R1 = 100, R2 = 50, V = 20,

solve_dc([[voltage_source, v1, V, [n1, ground]],

[resistor, r1, R1, [n1, n2]],

[resistor, r2, R2, [n2, ground]],

[diode, d1, in914, [n2, ground]]], L).

Chapter 4

Using the System

The user interface of compiled CLP(R) is very much like that of a usual Edinburgh-style Pro-
log interpreter. In other words, it is quite possible to use this system while almost completely
ignoring the fact that it is compiler-based. In fact, there is no such thing as an interpreted
mode and all code (static and dynamic) is compiled. All goals are compiled (quickly) before
being executed, and any consulted file is immediately compiled. The rulebase is available
for inspection (except for protected rules) and can be modified dynamically as long as the
relevant relations have been declared to be dynamic as described below. Normally the user
will find that consulted files take a little longer than usual to be read in (because they are
being compiled) and that programs will usually run much more quickly and use less space
than in an interpreter. Symbolic debugging is still possible, as are all other aspects of inter-
active programming. However, the user may also take special advantage of the compiler by
creating clam files that contain compiled CLP(R) code that can be loaded extremely quickly
and do not include the overhead of the original program text, although this rules out certain
operations. In short, the system is intended to get the best of both worlds by combining the
flexibility of an interpreter with the efficiency of a compiler. The experienced PROLOG user
may want to skip directly to Section 4.6 which illustrates many of the features, syntax and
user interface of CLP(R) using an example session.

Note: Creation of CLAM files has not yet been implemented.

However, compilation in CLP(R) is relatively quick.

The first operation CLP(R) performs is to load the distinguished library file init.clpr.
This file must either be in the current working directory, or in a directory whose path name is
defined via the environment variable CLPRLIB, or in a directory whose path name is specified
during installation. This last alternative is explained in Chapter 6.

31

CHAPTER 4. USING THE SYSTEM 32

4.1 Command Line Arguments

The syntax of a command-line is

clpr [options] [filename]

where filename contains a CLP(R) program. The following explains the various options
available:

-cs <n>

Specify size of code space (default 128,000).

-hs <n>

Specify size of heap (default 200,000).

-ls <n>

Specify size of local stack (default 100,000).

-ss <n>

Specify maximum number of solver variables (default 128,000).

-ts <n>

Specify size of trail (default 100,000).

-z <r>

Set internal notion of zero to this small number. Numbers between ±r are taken to be
equivalent to zero.

-r <int>

Specify a random number seed.

4.2 Filenames

Filenames consulted or read as an input stream may have an optional implicit suffix added to
the filename. The default suffix is usually “.clpr” (“.clp” for MS/DOS or OS/2) depending on
the installation. This may be changed by the use of the environment variable CLPRSUFFIX,
which can be set to a list of suffixes separated by colons, e.g. ”.clpr:.clp”. First, the original
filename is tried and if that cannot be read then a suffix is added in the order specified by the
list of suffixes. (Note that in version 1.1 and earlier of CLP(R), only the specified filename
was used without any implicit suffixes, but the behavior here is compatible).

CHAPTER 4. USING THE SYSTEM 33

4.3 Queries

After the system has been initialized, it will prompt the user for a query. It will continually
accept user goals and solving for them until the session is terminated with a halt/0 or if
it encounters the end of file (eg: ∧D on UNIX or ∧Z on MSDOS). This again is similar to
the style of most PROLOG systems. If the user goal failed then the “*** No” message is
output, otherwise the query is successful and the resulting answer constraints (the constraints
on variables in the query) are output. A successful query will also display a “*** Yes”
message, but if there are other alternatives to try for the query then the “*** Retry?”
message is displayed and the user is prompted to either press carriage return or enter “.”
(or “n”) to accept the answers, or “;” (or “y”) to cause backtracking. A different prompt
is displayed if delayed (nonlinear) remain at the end of the execution. The message “***
Maybe” replaces “*** Yes” and “*** (Maybe) Retry?” replaces “*** Retry?” to indicate
that the satisfiability of the nonlinear constraints remaining has not been decided by CLP(R).
Execution of a query can be interrupted at any time by using the interrupt keycode (∧C
usually).1 A buffer of the last 50 goals is kept, and may be examined by the history/0 (or
h/0) predicate. An old query may be re-executed by just entering its history number as a
goal (eg: ?- 5.).

For every top-level query. There is also an implicit dump on the variables in the goal,
i.e. the set of answer constraints using those variables are printed, with the exception that
anonymous variables and also other variables beginning with an “ ” are ignored. No implicit
dump is performed for goals embedded in a file. (Note that the output constraints differs
from many PROLOG systems which display the variable bindings produced from execution.)

4.4 Loading/consulting and reconsulting programs

A CLP(R) source program can be loaded using the consult/1 predicate or the more conve-
nient notation[<list of filenames>], e.g. [myprog, mytest] at the top level prompt loads
those two files. Loading a program compiles all the rules in that file, makes the new predicates
in it available for use and also executes any embedded goals. Unlike some PROLOG systems
where consulted files are interpreted and compilation is done using a different method, all
consulted predicates in CLP(R) are compiled (usually fairly quickly). Note that filenames
may have an implicit suffix added as in Section 4.2. Filenames which are specified directly
should consist entirely of lowercase characters and any other kind of filename, eg. a path-
name, should be surrounded by single quotes.

Reconsulting a file with reconsult/1 or the notation [‘<list of filenames>] will if it

1It is however not absolutely safe to interrupt at any time, and occasionally at critical stages an interrupt
may cause the system to be internally inconsistent

CHAPTER 4. USING THE SYSTEM 34

encounters previous definitions, erase them and replace them by the new definitions. By
default, a predicate which is redefined will generate a warning. This may be turned off by
executing the system predicate warning(redefine off). Some PROLOG systems use an al-
ternative notation [-filename] but in CLP(R) this conflicts with unary minus. Also in some
systems, consulting and reconsulting are combined together. In CLP(R) consulting a previ-
ously consulted file with active definitions will result in warning messages and redefinitions
will be ignored.

The special filename user denotes that the file to be consulted or reconsulted is read
from standard input. This allows direct entry of rules which is handy for quick modifications
from the top query level. More on the organization of consulted files is contained in Section
4.7.

4.5 Style Checking and Warnings

CLP(R) programs can be optionally checked against some stylistic conventions, also called
style checking. The purpose of the style checking is to give a warning that the program may
potentially contain some common “bugs” when the style rules are not followed. It is impor-
tant to remember that these are merely warnings and a program may be perfectly correct
otherwise. There are three different kinds of style checking that can be applied — single var,
discontiguous, name overload.2 The option all covers all three styles. By default, style
checking is on and individual style checking can be turned on (off) with style check/1

(no style check/1), e.g. no style check(all) turns off all style checking.

The different style conventions are as follows:

single var — This warns if a variable is used only once within a rule and may possibly
indicate that a variable has been mispelled. Anonymous variables () and also variables
prefixed with an underscore are ignored. An example error is the rule “p(X, Y)” gives
the following warning message:

Warning: Style check, singleton variables, rule 1 of q/2

+++ X, Y

discontiguous — This style check assumes that all the different rules defining a predicate
occur contiguously within a file and warns if there is another intervening rule. Common
bugs which can result when this style check is not followed can be mispelling the name
of a rule, or substituting a “.” to end a rule when a “,” was meant to continue the rule,

2The first two options are similar to that in Quintus Prolog. The last is different.

CHAPTER 4. USING THE SYSTEM 35

e.g. the program “p(X) :- X > 0. q(X). p(0) :- r(X).” where there the intent is
for a comma to be before q/1 gives the following warning message:

Warning, <stdin>:1: Style check, p/1 is not contiguous

name overload — This checks whether the same predicate name is defined with different
arities. While it is not uncommon to have different predicates of different arities with
the same name, it may also be indicative of an incorrect number of arguments, e.g. the
program “p(0,0). p(1). p(2,2).” gives the following warning message:

Warning: rule overloading, same name, different arity:

+++ p/1, p/2

(Note that when this option has been disabled and then re-enabled, then rules which were de-
fined before style checking was enabled will also generate warnings. The additional warnings
can be disabled by using the special system predicate $clear style check/0. style check(all reset)

also does this, clearing all previous warnings and turns on style checking.)

Another kind of warning is given when a rule is defined in more than one file. The basic
unit of compilation is a single file and all the occurences of rules for a predicate have to be
defined within the same file. The exception is that when a file is being reconsulted, then
the new definitions replace the old ones. The compiler will simply ignore all additions to an
existing previously compiled predicate and by default a warning is given. See also warning/1

to control whether warnings are given.

4.6 Sample Session

This is a sample session with the CLP(R) system. Some extra information is given using
comments after the % character.

% clpr

CLP(R) Version 1.2

(c) Copyright International Business Machines Corporation

1989 (1991) All Rights Reserved

1 ?- f(X,Y) = f(g(A),B). % some simple ‘‘unification’’

B = Y

CHAPTER 4. USING THE SYSTEM 36

X = g(A)

*** Yes

2 ?- X = Y + 4 , Y = Z - 3, Z = 2. % simple arithmetic evaluation

Z = 2

Y = -1

X = 3

*** Yes

3 ?- X + Y < Z, 3 * X - 4 * Y = 4, 3 * X + 2 * Y = 1.

Y = -0.5

X = 0.666667

0.166667 < Z

*** Yes

4 ?- X + Y < Z, 3 * X - 4 * Y = 4, 2 * X + 3 * Z = 1.

Y = -1.125*Z - 0.625

X = -1.5*Z + 0.5

-0.0344828 < Z

*** Yes

5 ?- history.

1 f(X, Y) = f(g(A), B).

2 X = Y + 4, Y = Z - 3, Z = 2.

3 X + Y < Z, 3 * X - 4 * Y = 4, 3 * X + 2 * Y = 1.

4 X + Y < Z, 3 * X - 4 * Y = 4, 2 * X + 3 * Z = 1.

*** Yes

6 ?- 2. % run second goal again

X = Y + 4, Y = Z - 3, Z = 2.

Z = 2

Y = -1

X = 3

CHAPTER 4. USING THE SYSTEM 37

*** Yes

7 ?- [’examples/fib’]. % consult (load) a program

>>> Sample goal: go/0

*** Yes

8 ?- ls fib. % look at the program

fib(0, 1).

fib(1, 1).

fib(N, X1 + X2):-

N > 1,

fib(N - 1, X1),

fib(N - 2, X2).

*** Yes

9 ?- fib(5,F). % only one answer to this

F = 8

*** Retry?;

*** No

10 ?- F > 7, F < 9, fib(N,F). % only ask for the first answer

N = 5

F = 8

*** Retry?

11 ?- [‘’examples/mortgage’]. % use "‘" to reconsult

>>> Sample goals: go1/0, go2/0

*** Yes

12 ?- ls. % look at the entire rulebase

CHAPTER 4. USING THE SYSTEM 38

h:-

history.

fib(0, 1).

fib(1, 1).

fib(N, X1 + X2):-

N > 1,

fib(N - 1, X1),

fib(N - 2, X2).

go:-

printf(\nFib(14) = , []),

ztime,

fib(14, X),

ctime(T1),

printf(% (Time = %)\n, [X, T1]),

printf(Fib-1(610) = , []),

ztime,

fib(Y, 610),

ctime(T2),

printf(% (Time = %)\n, [Y, T2]).

mg(P, T, I, B, MP):-

T = 1,

B = P + P * I - MP.

mg(P, T, I, B, MP):-

T > 1,

mg(P * (1 + I) - MP, T - 1, I, B, MP).

go1:-

ztime,

mg(999999, 360, 0.01, 0, M),

ctime(T),

printf(Time = %, M = %\n, [T, M]).

go2:-

ztime,

mg(P, 720, 0.01, B, M),

ctime(T),

printf(Time = %\n, [T]),

dump([P, B, M]).

CHAPTER 4. USING THE SYSTEM 39

*** Yes

13 ?- [‘’examples/mortgage’].

Warning: mg/5 has been redefined

>>> Sample goals: go1/0, go2/0

*** Yes

14 ?- ls.

h:-

history.

fib(0, 1).

fib(1, 1).

fib(N, X1 + X2):-

N > 1,

fib(N - 1, X1),

fib(N - 2, X2).

go:-

printf(\nFib(14) = , []),

ztime,

fib(14, X),

ctime(T1),

printf(% (Time = %)\n, [X, T1]),

printf(Fib-1(610) = , []),

ztime,

fib(Y, 610),

ctime(T2),

printf(% (Time = %)\n, [Y, T2]).

mg(P, T, I, B, MP):-

T = 1,

B = P + P * I - MP.

mg(P, T, I, B, MP):-

T > 1,

mg(P * (1 + I) - MP, T - 1, I, B, MP).

go1:-

ztime,

CHAPTER 4. USING THE SYSTEM 40

mg(999999, 360, 0.01, 0, M),

ctime(T),

printf(Time = %, M = %\n, [T, M]).

go2:-

ztime,

mg(P, 720, 0.01, B, M),

ctime(T),

printf(Time = %\n, [T]),

dump([P, B, M]).

*** Yes

15 ?- go2.

Time = 0.25

M = -7.74367e-06*B + 0.0100077*P

*** Retry?

16 ?- [user].

p(X) :- writeln(X).

^D

*** Yes

17 ?- p(hello).

hello

*** Yes

4.7 Organization of Consulted Files

Slightly more care than usual must be taken in organizing program files in compiled CLP(R).
A file consists of a number of chunks. Each chunk consists of a zero or more rules (defined
in the usual way) possibly followed by a goal. That is, a goal always closes off a chunk, and
the end of the file closes off the last chunk if a goal has not done so. A relation may not
span more than one chunk unless it has been declared to be dynamic (see below) before the
first rule defining it. Defining a relation statically in more than one chunk will generate a
warning message stating that the new definitions will be ignored is given. However if one

CHAPTER 4. USING THE SYSTEM 41

is reconsulting then the new definitions will replace the ones defined in the previous chunk.
A warning message that the redefinition has taken place is also given. However, if such a
redefinition during a reconsult is not possible when the earlier definition has been protected
(using the prot/2 predicate), in which case a warning is printed and the new definition is
ignored. The motivation for this restriction is that the state of the rulebase needs to be well
defined whenever a goal is encountered in the consulted file.

There may be three kinds of goals in any consulted file. All three kinds are considered
to be identical (and behave in the usual way) when they are encountered in a source file
that is being consulted. However, they are different when a source file is first compiled and
when the .clam file is consulted. All goals of the form :- goal are only executed during the
compilation stage. Those of the form ::- goal are only executed during the consultation of
the compiled code, and the goals of the traditional form ?- goal are executed twice: once
during compilation and once during consultation. In summary:

:- goal.

is executed during compilation of the source file.
::- goal.

is executed during consultation of the .clam file.
?- goal.

is executed during compilation and at runtime.

The first kind of goal might be used for compiler directives and messages to whoever is
watching while some code is being compiled. The second kind might be used for making
a program run itself straight after it is loaded. Finally, the third kind of goal is useful for
things like operator declarations which need to be present for the remainder of a program
to parse correctly and also when the program is running so that terms will print correctly,
etc. An embedded goal that fails during execution will generate a warning message (see also
warning/1).

4.8 Static and Dynamic Code

A CLP(R) program is divided into static rules, which do not change, and dynamic rules,
which allow the rulebase to be modified via assert/1 and retract/1 as well as by consulting.
As mentioned above, static rules/code cannot span more than one chunk. Dynamic code
on the other hand can be defined anywhere and dynamic rules can be added by asserting
them during execution or by consulting a program file, which behaves as if those definitions
were asserted. The only requirement for rules intended to be dynamic is that the particular
predicate name has to be pre-declared using dynamic/2 which ensures that all uses of this
predicate are now dynamic, e.g. ?- dynamic(foo, 2). The first argument is the name of

CHAPTER 4. USING THE SYSTEM 42

the predicate and the second is its arity3. Every dynamic declaration has to occur before
any use of a dynamic predicate is made (including rule, assert and retract), otherwise an
error is generated with any of the preceeding system predicates and any use of that predicate
is assumed to be static. Declaring a predicate to be dynamic allows the use of rule/2 to
inspect the rulebase, assert/1 to add new rules and retract/1 to delete rules.

The operational semantics of the assert, rule and retract family of system predicates is
that any modifications to the rulebase occur immediately and are immediately available for
use4. This is called the immediate update view [17]. Consider the following example:

?- dynamic(p,0).

p :- assert(p), fail.

This will cause the goal “?- p.” to succeed. Apart from the dynamic declaration and
the immediate update semantics, there is no difference between static and dynamic code and
they may be used interchangeably, e.g. both can be listed with ls/1. Dynamic code is also
compiled but is generally not as efficient as static code and also less deterministic. Also note
that the semantics of assert, rule and retract are an enhancement of that in PROLOG
(see Section 3.4.2).

4.9 Debugging Support

The debugging facilities in this version of CLP(R) are rudimentary.

codegen debug

This is a compiler directive, which includes debugging instructions in subsequently
generated code. It should be active before the file to be debugged is consulted.

codegen nodebug

This is a compiler directive that turns off the generation of debugging code in subse-
quent compilation.

spy

This switch makes all relations compiled under codegen debug visible to the debugger.
Protected rules are never visible.

3Most PROLOG’s use the name/arity convention to specify this but this could be confused with division,
hence the two argument form is used

4The operational semantics of dynamic code may vary considerably between different PROLOG systems
hence one should not place undue reliance on it.

CHAPTER 4. USING THE SYSTEM 43

spy(+P, +A)

This switch makes the relation for predicate P with arity A visible to the debugger if
it was compiled under codegen debug. It cannot be applied to protected relations.

spy([P1(+A1),...,Pn(+An)])

Like spy/2, except a list is supplied of the predicates to be spied on where the Pi’s
are the predicate names and the Ai’s their arity.

nospy

Makes all relations invisible to the debugger.

nospy(+P, +A)

Makes the relation for predicate P with arity A invisible to the debugger.

nospy([P1(+A1),...,Pn(+An)])

Like nospy/2, except a list is supplied of the predicates to be spied on where the Pi’s
are the predicate names and the Ai’s their arity.

trace

Activates printing. All subsequent attempts to search a relation visible to the debugger
will result in a message being printed. The message is the same regardless of whether
this is a first or subsequent attempt to satisfy a goal.

notrace

De-activate printing.

4.10 Notes on Efficiency

Here we indicate some key features that can significantly affect efficiency. Some of them
are unsound in general, and hence extreme care should be taken when using them. Novice
programmers may (and probably should) skip this section entirely.

• Indexing
CLP(R) employs first argument indexing for constructed functor terms as well as real
numbers. Using indexing can result in significant speedups.

• Tail recursion
Last call optimization is employed, and hence procedures that are tail-recursive will
not increase local stack usage.

• Logical disjunction “;/2” and if-then-else “->/2”
These are implemented at the meta-level and hence are not particularly efficient.

CHAPTER 4. USING THE SYSTEM 44

• Dynamic code
Dynamic code is slower than static code and is also less deterministic. Cuts can be
used to make it more deterministic. Also, since dynamic code is compiled, asserting
large terms may not be very fast.

• Garbage collection
Not implemented as yet.

• Implicit equalities
The solving of inequalities that imply some implicit equations can be controlled using
implicit/0, noimplicit/0, partial implicit/0 (see Section 5.1.7).

• Asserting a rule
The predicate assert/1 involves incorporating the constraints that relate the vari-
ables in that rule (see Section 3.4.2). This is less efficient than if the constraints were
not taken into account. The fassert family of special predicates (“fast assert”) per-
forms assertion without incorporating arithmetic constraints (see Section 5.1.7), as in
PROLOG.

4.11 Notes on Formal Correctness

The following identifies the main reasons why the CLP(R) implementation does not perfectly
conform to the idealized CLP scheme.

• No occurs check during (functor) unification;

• Depth-first search (loss of completeness);

• Floating point: because this implementation of CLP(R) makes use of double precision
floating point arithmetic, some problems may be caused by artifacts such as roundoff.
The most common problem is that a constraint used as a test (in that all variables
are ground) unexpectedly fails because of round-off. This is dealt with by adjusting
the amount of slack that the system allows in numerical comparisons, using the -z

command line option.

• Nonlinear and meta-level constraints are delayed.

Chapter 5

Built-In Facilities

5.1 System Predicates

5.1.1 Rulebase

op(+P, +T, +S)

Declares the atom S to be an operator of type T with precedence P. The type can
be used to specify prefix, postfix and binary operators using the positional notation:
fy, fx, yf, xf, yfy, xfy, yfx, xfx; where the “f” specifies the operator and the
“y” and “x” the arguments. A “y” specifies that the topmost functor/operator in
the subexpression be of the same or lower precedence than the operator “f”, and “x”
specifies that it is to be strictly lower. The precedences must range between {0 . . . 1200}.
where a 0 precedence removes the operator.

(See also Section 5.3 for some examples.)

listing

ls

List the rules of the entire rulebase that are currently visible.

listing +P

ls +P

List the currently visible rules for the predicate P, of all arities.

consult(+F)

[+F]

Read the file F and add rules that it contains to the database. Goals in the file are
handled in a way that is described in Section 4.7. If the filename is specified as user

45

CHAPTER 5. BUILT-IN FACILITIES 46

then the standard input is used instead of a file. The form [F] takes a list of filenames
while consult/1 takes only a single file. When the file F cannot be read then a possible
list of file suffixes is added using the CLPRSUFFIX environment variable (see Section
4.2). By default, a “.clpr” file extension is used. (Not currently implemented: If the file
has a .clam extension it is expected to be clam code and is loaded appropriately. If it
has no extension and a version with a .clam extension exists it is given preference.)

reconsult(+F)

[‘+F]

Same as consult, but if a predicate already has rules defining it from before, they
are deleted before the new ones are added, and a warning message is printed. Note
that [-F], which is a common synonym for reconsult in PROLOG systems, cannot
be used (since it means negative F).

retractall

Delete entire unprotected portion of the rulebase.

retractall(+H)

Delete all currently visible rules with heads matching H. Static code cannot be deleted
with retractall/1.

asserta(+R)

Add rule R to the rulebase before all others defining the same predicate. Note that
coded terms become uncoded in the rulebase. See Section 3.4.2 for more information
on meta-coding of rules and differences with the usual PROLOG semantics.

assertz(+R)

assert(+R)

Add rule R to the rulebase after all others defining the same predicate. Note that
coded terms become uncoded in the rulebase. See Section 3.4.2 for more information
on meta-coding of rules and differences with the usual PROLOG semantics.

rule(+H,?B)

True if the rule H:-B is in the currently visible part of the rulebase. Finds the next
matching rule on backtracking. Note that the rules in the rulebase are coded before
matching is done. See Section 3.4.2 for more information on meta-coding of rules and
differences with the usual PROLOG semantics.

deny(+H,?B)

Delete rule matching H :- B from the currently visible part of the rulebase. Also tries
again on backtracking. It is similar to retract/1 and both H and B are coded terms.
See Section 3.4.2 for more information on meta-coding of rules and differences with
the usual PROLOG semantics.

CHAPTER 5. BUILT-IN FACILITIES 47

retract(+R)

Delete rule matching R from the currently visible part of the rulebase. Like rule/2,
this has a “coded view” of the rulebase. See Section 3.4.2 for more information on
meta-coding of rules and differences with the usual PROLOG semantics.

prot(+P,+A)

Protect all rules for predicate P with arity A in the rulebase. This makes them look
like system predicates to the user. In particular, they cannot be listed, asserted or
retracted.

prot([P1(+A1),...,Pn(+An)])

Same effect as prot/2 described above, but takes a list of predicate names Pi with
arities Ai in parentheses.

5.1.2 Control

!

The dreaded cut. As usual, its use is not recommended. It is often more appropriate
to use once/1.

fail

Always fails.

true

Always succeeds.

repeat

Always succeeds, even on backtracking.

+B1 , +B2

Logical conjunction.

+B1 ; +B2

Logical disjunction. A cut inside one of these will behave very strangely. That is,
it will behave as if the two sides of the “;” are separate rules. (Note that because
;/2 is currently implemented as a meta call it may sometimes not behave as if it was
defined using an auxiliary predicate. This can occur if there is an arithmetic term that
causes failure. The following short example illustrates the difference between try/3

and try1/3 for the goal ?- try(X, 1, 0),
try(X, Y, Z) :- X=Y/Z ; X=1.

try1(Y/Z,Y,Z). try1(1,Y,Z).

This may possibly change to be the same in some future version.)

CHAPTER 5. BUILT-IN FACILITIES 48

+C -> +B1 ; +B2

If C then call B1 otherwise call B2. Uses unsafe negation. Inefficient, since it uses
call/1. A cut inside one of these will behave very strangely.

5.1.3 Meta Level

call(+X)

Usual meta level call, behaving as if the predicate X appeared directly in the body of
a rule or goal. Note that this form must be used – it is not permissible to simply put a
variable in the body of a rule. Both static and dynamic code can be used with call. In
this version, a cut inside a call is ignored. Also, printf/2 and dump/1 cannot be used
inside call. Both these restrictions can be avoided by simply redefining them using a
subsidiary rule.

not(+X)

Unsafe negation. It is implemented using call/1, so it is also likely to be rather slow.

dump(+L1, ?L2, ?L3)

Similar to dump/2 (see Section 3.5.2); the first argument L1 represents the target
variables and the second argument L2 represents new variables. The difference with
dump/2 is that (a) the projection is meta-coded (cf. Section 3.4), and (b) this projection
is not output but rather constructed as the third argument L3 (cf. Section 3.5.2). Note
that dump/3 does change the current collection of constraints.

once(+X)

This is equivalent to call(X), ! and unfortunately right now it is implemented that
way as well. Only the first answer to the query X is considered.

nonground(?X)

True if X is not a ground term.

ground(?X)

True if X is a ground term.

nonvar(?X)

True if X is not a variable: i.e, it has been constructed or grounded.

var(?X)

True if X is a variable. It may have been involved in an arithmetic constraint, but has
not been grounded or constructed.

?X == ?Y

True if X and Y are bound to exactly the same term. In particular, variables in equiv-
alent positions must be identical. For example ?- X == Y fails while ?- X = Y, X ==

Y succeeds.

CHAPTER 5. BUILT-IN FACILITIES 49

atom(?X)

True if X is an atom — that is, a functor constant (including the empty list).

atomic(?X)

True if X is an atom or real number.

functor(?X)

True if X is constructed with a functor.

real(?X)

Enforces a constraint that X can take real values; it is equivalent to any tautologous
arithmetic constraint involving X, eg: X + 0 = X.

arithmetic(?X)

True if X is constrained to have a real value. Note that this is just a passive test, as
opposed to real/1.

?T =.. ?L

T is a term and L is the term expanded as a list. (Also known as univ/2). This
predicate can be used to both decompose and construct terms. For its use either the
first argument must be constructed (a nonvar), or the second argument must be a list
of fixed length whose first element is a functor constant.

functor(?T, ?F, ?A)

T is a term, F and A are the name and arity of the principle functor of T. Either T

must be constructed or F must be a functor constant (not a real number) and A must
be a nonnegative integer.

arg(+N, +T, ?A)

A is the Nth argument of term T. N must be a positive integer and T a compound term.
If N is out of range the call fails.

occurs(-V,?T)

V is a variable occurring in term T.

floor(+R, -I)

R must be a real number, and I is the largest integer smaller than or equal to R.

dynamic(+P,+A)

Declares the predicate P with arity A to be dynamic, so that rules can be added and
deleted at will.

CHAPTER 5. BUILT-IN FACILITIES 50

5.1.4 Input/Output

In this section, non-ground variables will either be printed with a specified name (like that
in the argument of dump/1), or if one is not specified they are printed in one of the following
formats:

h%d

Heap variable.

s%d

Local stack variable.

t%d

Parametric variable in solver.

S%d

Slack variable in solver.

Input/Output facilities are as follows.

dump(+L)

List the collection of current constraints on the current output stream, projected with
respect to the target variables in the list L. The list L must be explicitly supplied, that
is, it is written syntactically as the argument of dump. The ordering of variables in the
list is used to represent the priority of the target variables (see Section 3.5.2).

dump(+L1, +L2)

A more flexible version of dump/1, without its syntactic restriction. Its first argument
L1 represents the target variables, and its second argument L2, which must be ground,
represents the new names to be used in the output. The elements of these two lists can
be arbitrary terms. (See Section 3.5.2 for further explanation.) Note that dump/2 does
not change the current collection of constraints.

nl

Send a newline character to the current output stream.

print(?T)

write(?T)

Print the term T, according to op declarations, on the current output stream.

writeln(?T)

The same as write(T), nl.

CHAPTER 5. BUILT-IN FACILITIES 51

printf(+F,+L)

Print the terms in the list L on the current output stream in the format given by the
string F. The behavior is similar to the printf library function in C. Every character
except for the special escape or argument patterns will be printed unchanged on the
output. The special escape characters begin with a “\” and are:

\XXX the character represented by the octal number XXX
\n a new line
\r carriage return
\b backspace
\f form feed
\X any other character X appears unchanged

The argument patterns all begin with “%” and are used to denote the formatting for
each of corresponding terms in the list L. A “%%” denotes a single percent. Otherwise
the format takes the form of an optional field width and optional precision followed by
one of the C printf conversion characters. More precisely this can be described with
the regular expression:

%[[-][0-9]*][\.[0-9]*][fegdoxcus%]
The integral specifiers will print the real number, which has been rounded to an integer
using the “even” rounding rule. An empty list is needed if no variables are to be printed.
As a convenience, a single “%” may be used instead of a specific argument format and
a default format appropriate to that particular argument will be used (with numbers
the default is printf format “%g”). For example,

printf("X = % Y =%3.2g\n", [X, Y]).

printf to atom(?A, +F, +L)

Like printf/2 except that instead of being printed A is equated with an atom whose
string is the same as what would otherwise be printed.

read(-X)

Read a term from the current input and bind the variable X to it. Any variables in the
input term are deemed to be disjoint from variables appearing in the rule. If an end
of file is read, the term ?-(end) is returned. Finally, the term obtained is in quoted
form. That is, any arithmetic operators are treated syntactically.

see(+F)

Make F the current input file.

seeing(?F)

True when F is the current input file.

CHAPTER 5. BUILT-IN FACILITIES 52

seen

Close current input file. Revert to “user” (standard input).

tell(+F)

Make F the current output file.

telling(?F)

True when F is the current output file.

told

Close current output file. Revert to “user” (standard output).

flush

Flush the buffer associated with the current output file.

5.1.5 Unix-Related Facilities

fork

Split the current process. Fails in one child and succeeds in the other. Not available
under MS/DOS1 and OS/2. 2

pipe(+X)

Create a pipe named X. For use with see, tell, etc. Not available under MS/DOS or
OS/2.

edit(+F)

Invoke the default editor on file F, and then reconsult the file. Under UNIX3 the default
is “vi”, under MS/DOS and OS/2 it is “edit”. If the environment variable EDITOR
is set then that is used instead.

more(+F)

Run the file F through the “more” utility or what the environment variable PAGER
has been set to.

halt

Exit from the CLP(R) system.

clpr

True. Used to test if the program is executing in the CLP(R) system.

abort

Abort execution of the current goal.

1MS/DOS is a trademark of Microsoft Corporation
2OS/2 is a trademark of IBM corporation
3UNIX is a trademark of Bell Laboratories.

CHAPTER 5. BUILT-IN FACILITIES 53

sh

Invoke an image of “sh” on UNIX systems. On MS/DOS or OS/2, starts a sub-shell
of “command.com” or what the environment variable COMPSEC as been set to.

csh

Invoke an image of “csh” under UNIX systems. On MS/DOS or OS/2 behaves the
same as sh/0.

oracle(+F,+P1,+P2)

Run the executable binary file F and set up a pipe P1 for writing to the process and
a pipe P2 for reading from the process. These pipes will be attached to the processes
standard input and standard output respectively. Not available on MS/DOS or OS/2.

5.1.6 Miscellaneous Facilities

history

Print last 50 command line goals.

history +N

Print last N command line goals.

h

Short for history/0.

N

Run the command line goal at position N in the history list. This may only be used as
toplevel command.

new constant(+A, +N)

Sets the numeric symbolic constant A to the value N. The constant name is speci-
fied without a “#”, e.g. ?- new constant(my constant, 5). A warning is printed if
the value of a known constant is changed and the warning can be turned off with
warning(warning off).

srand(+X)

Set random number seed to the real number X.

rand(-X)

Generate uniformly distributed random number 0 and 1 inclusive and bind it to X.
The quality of the routine used is not guaranteed.

ztime

Zero the CPU time counter.

CHAPTER 5. BUILT-IN FACILITIES 54

ctime(-T)

Binds T to the elapsed CPU time since the counter was last zeroed. T should have
been uninstantiated.

style check(+A)

Style checking warns about possible program errors. It is to be used with A being
one of single var, discontiguous, name overload and all. A warning is given when
the style check rule is violated. The option all turns on both the checks. The special
option reset all clears all previous pending warnings which may have accumulated
if style checking was off and turns on full style checking. See Section 4.5 for details.

no style check(+A)

The reverse of style check/1 and turns off the corresponding options single var,
discontiguous, name overload and all.

$clear style check

Clears any pending old style check warnings that may occur when style checking is
turned from off to on. Usually it is reasonable not to need to use this and this is more
meant for special uses.

warning(+A)

The behavior when an error occurs can be modified with warning/1. By default,
when an error occurs a warning error message is printed and execution is aborted back
to the top level. The various options for warning change this behavior. The options
for A must be one of abort, continue, warning on, warning off, redefine on and
redefine off. The options continue or abort control whether or not execution is
aborted back to the top level on an error. The printing of warning messages is con-
trolled by warning on and warning off, while redefine on and redefine off control
whether or not redefinitions of predicates during a reconsult issue a warning. The op-
tion abort overrides warning on and warning messages are displayed when abort is
active. Otherwise the paired options here behave indepently.

5.1.7 Special Facilities

These are unsupported facilities which may be used to gain more efficiency under certain
circumstances or are experimental in nature. They should be used with care and may change
or disappear.

fassert(+R)

Like assert/1 but it does not take into account meta-level constraints or arithmetic
constraints and is like assert in PROLOG. Consequently it is faster than assert/1

CHAPTER 5. BUILT-IN FACILITIES 55

but makes less sense when there are constraints involved. When the rules are ground,
fassert behaves the same as assert.

fasserta(+R)

fassertz(+R)

Ditto for asserta/1 and assertz/1.

$call(+X)

Meta level call on a single user-defined predicate only. No compound goals or system
predicates are allowed.

implicit

Implicit equalities are detected. This is the default. A set of inequalities can sometimes
be equivalent to some equations; and these are known as implicit equalities. A trivial
example of an implicit equation is the following:

X >= 0, X <= 0 is equivalent to X = 0.

The implicit/0 flag controls whether these implicit equations are detected by the
constraint solver. One caveat to note with the use of these flags is that switching them
on or off should be applied betweem different goal executions and not during an ac-
tual execution. Another important point is that, when there are nonlinear constraints,
turning off implicit equations may lead to delayed constraints not being awakened.

noimplicit

Turns off detection of implicit equalities. These are equations which are implied by the
collection of inequality constraints. The implication of this is that delayed constraints
which would otherwise be awakened may continue to be delayed instead. Constraint
solving may or may not be faster with noimplicit.

partial implicit

Detects only some implicit equalities. This may be faster than implicit.

set counter(+C, +V)

This is a global counter which is not changed by backtracking. Sets the counter with
the atomic name C to the real number value V. The counter name can be any atomic
name.

counter value(+C, ?V)

V is equated with the value of counter C.

add counter(+C, +V)

The counter C is incremented by V.

CHAPTER 5. BUILT-IN FACILITIES 56

5.2 Nonlinear and Delayed Constraints

This section describes the form of the delaying conditions for examples of the various non-
linear constraints given below. In some of the functions below, sin, arcsin, cos, arccos,
there will be values of X and Z which fall outside the range of that function. Such invalid
values will cause the constraint to fail and by default a “Out of range” value is generated.
See warning/1.

Z = X * Y

Delays until X or Y is ground.

Z = sin(X)

Delays until X is ground.

Z = arcsin(X)

Delays until X or Z is ground.

Z = cos(X)

Delays until X is ground.

Z = arccos(X)

Delays until X or Z is ground.

Z = pow(X, Y)

Delays until (a) X and Y are ground, or (b) X and Z are ground,
or (c) X = 1, or (d) Y = 0, or (e) Y = 1.

Z = abs(X)

Delays until (a) X is ground, or (b) Z = 0, or (c) Z is ground and negative.

Z = min(X, Y)

Delays until X and Y are ground.
(A proper implementation, delaying until X ≤ Y or X ≥ Y, may come later.)

Z = max(X, Y)

Similar to the above.

Z = eval(X)

Delays until X is constructed.

CHAPTER 5. BUILT-IN FACILITIES 57

5.3 Pre-Defined Operators

::- op(21, fy, ’-’).

::- op(21, yfx, *).

::- op(21, yfx, /).

::- op(31, yfx, (-)).

::- op(31, yfy, +).

::- op(37, xfx, <).

::- op(37, xfx, <=).

::- op(37, xfx, >).

::- op(37, xfx, >=).

::- op(40, xfx, =).

::- op(40, xfx, =..).

::- op(40, xfx, is).

::- op(50, fx, ‘).

::- op(51, xfy, (.)).

::- op(60, fx, alisting).

::- op(60, fx, als).

::- op(60, fx, h).

::- op(60, fx, history).

::- op(60, fx, lib).

::- op(60, fx, libdir).

::- op(60, fx, listing).

::- op(60, fx, ls).

::- op(60, fx, not).

::- op(60, fx, once).

::- op(252, xfy, ’,’).

::- op(253, xfy, ;).

::- op(254, xfy, (->)).

::- op(255, fx, (:-)).

::- op(255, fx, (::-)).

::- op(255, fx, (?-)).

::- op(255, xfx, (:-)).

Chapter 6

Installation Guide

Here we discuss how CLP(R) can be made to run on a particular computer system. For
installation details on MS/DOS or OS/2, please refer to the appropriate README in the
DOS directory.

6.1 Portability

This version of compiled CLP(R) should be easily portable to 32-bit computers running some
reasonable variant of the UNIX operating system. In most cases, all that will be necessary is
for the installer to edit the Makefile to specify the machine and operating system, choose
the C compiler, optimization level and name of the CLP(R) executable file, and run make.

6.1.1 Pre-defined Installation Options

The Makefile for CLP(R) contains definitions of the environment variables CC, CFLAGS,
EXEC and OPTIONS. They should be checked before installation and adjusted as follows.

• CC is just the name of the C compiler to be used to compile the CLP(R) system. It
is almost always reasonable to leave this as cc, although many machines now have
more efficient (and more correct) C compilers available. Information about these can
be obtained from your system administrator.

• CFLAGS specifies switches of the above C compiler that need to be used. While various
C compilers have their own range of switches that might have to be used to make

58

CHAPTER 6. INSTALLATION GUIDE 59

such a large program compile and run, in most cases only the optimization level will
be needed here. This will almost always be -O but higher optimization levels may be
available. Also special flags may sometimes be necessary to utilize the full performance
of the native floating point hardware. However, it is important to realize that many
optimizing C compilers have bugs that are only triggered by compiling a large program
at a high optimization level. For this reason, the first attempt to install CLP(R) should
be made without invoking the C compiler’s global optimizer. This usually involves just
leaving the CFLAGS field blank.

• EXEC specifies the name of the CLP(R) binary to be generated. We recommend clpr.

• LIBPATH specifies the default directory for the startup file init.clpr. It should be set
to the directory in which CLP(R) is installed.

• OPTIONS is used to specify the hardware and operating system. A number of predefined
options are available, which often need to be used in combinations.

BSD Always set if system is running Berkeley Unix, or MACH, or Ultrix. This is also
to be set for NEXT machines.

AIX Always set if system is running IBM’s AIX operating system.

SYS5 This broadly indicates that some version of System V Unix is being used. Should
also be used in combination with AIX flag and if the operating system is Hewlett-
Packard’s HP/UX.

IBMRT This indicates that the system is an IBM RT/PC.

RS6000 This indicates that the system is an IBM RS/6000.

HP835 This is needed for the Hewlett-Packard RISC workstations – especially the 9000
series model 835. Note that it is not appropriate for those HP workstations based
on Motorola processors.

MIPS Needed for machines with MIPS CPU, such as SGI machines and the DECStation
3100.

MSDOS Set for 386 or 486 PC’s running MS/DOS. See the file “DOS/README.DOS”
for details.

OS2V2 Set for 386 or 486 PC’s running OS/2 2.0 (IMPORTANT NOTE: CLP(R) version
1.2 will not work on OS/2 1.x because that only supports 16-bit addressing). See
the file “DOS/README.OS2” for details.

So, for example an IBM RS/6000 running AIX would need the definition

OPTIONS = -DAIX -DSYS5 -DRS6000

CHAPTER 6. INSTALLATION GUIDE 60

One parameter which may have to be changed to ensure that the CPU timing is correct
on machines running System V Unix is the Hertz rate which determines the unit of time
measured. Typically this value of HZ is either 60 or 100. The default value is 60 and otherwise
it should be added to the OPTIONS line in the Makefile, eg. -DHZ=100, (on the RS/6000
the default is 100hz).

6.1.2 Customized Installation

When CLP(R) starts up it performs some consistency checks on some of the default values
in the startup. In particular, on failure to startup it may recommend that the definition
of PMASK be changed in emul.h. If that does not work or if a fatal installation error was
reported then you may have an unusual operating system problem which cannot be easily
fixed by the installer, and it may be best to contact the authors.

While there are various system limits, these are mostly parameterized and can be changed
either directly on the command line or by recompiling with new values for the limits. Most
of the limits are contained in the file config.h, and some of them will be described below.
The parameters which are not listed below may be more dangerous to change arbitrarily.

Pre-defined constant Meaning
DEF CLP SUFFIX default suffix for CLP(R) program files
INITFNAME default bootstrap file
DOS TMP FILE name of temporary file used only under MSDOS or OS2
DEFAULT EPS default value of for zero
DEF CODE SZ default maximum size of code space
MAX GOAL CODE default maximum size of code for a top-level goal
DEF LSTACK SZ default maximum stack size
DEF HEAP SZ default maximum heap size
DEF TRAIL SZ default maximum trail size
DEF SOLVER SZ default maximum number of solver variables
MAX DUMP VAR maximum number of variables for dump
MAX PROJ NUM maximum number of real constants in dump
MAX IMPLICIT maximum number of implicit equations detected by a constraint

The stack, code, heap and trail sizes; value of zero; and the number of solver variables can
all be changed from the command line (see Section 4.1).

CHAPTER 6. INSTALLATION GUIDE 61

6.2 Basic Configuration

The only file CLP(R) system needs to read on startup is init.clpr. It always looks for this
file in the directory specified at runtime by the environment variable CLPRLIB, defaulting to
either the current working directory or what LIBPATH has been specified as in the Makefile.

The only other environment variable which one may want to change is to add your own
list of file suffixes with the environment variable CLPRSUFFIX. The format is in the style of
the UNIX sh PATH variable.

Chapter 7

Bug Reports and Other Comments

Please address all correspondence to

Joxan Jaffar, H1-D48
IBM Thomas J. Watson Research Center
P.O. Box 704
Yorktown Heights, NY 10598
U.S.A.
(joxan@watson.ibm.com, joxan@yktvmh.bitnet)

62

Bibliography

[1] Tod Amon and Gaetano Borriello. An approach to symbolic timing verification. In Tau
’92: 2nd International Workshop on Timing Issues in the Specification and Synthesis of
Digital Systems, Princeton, NJ, March 1992.

[2] Tod Amon and Gaetano Borriello. An approach to symbolic timing verification. In
Proc. 29th ACM/IEEE Design Automation Conference, pages 410–413, Anaheim, CA,
USA, June 1992.

[3] Christoph Brzoska. Temporal logic programming and its relation to constraint logic
programming. In Logic Programming: Proceedings of the 1991 International Symposium,
pages 661–677, October 1991.

[4] Michael M. Gorlick, Carl F. Kesselman, and Daniel A. Marottaand D. Stott Parker.
Mockingbird: A logical methodology for testing. Journal of Logic Programming, 8(1 &
2):95–119, January/March 1990.

[5] James A. Harland and Spiro Michaylov. Implementing an ODE solver: a CLP approach.
Technical Report 87/92, Department of Computer Science, Monash University, Victoria,
Australia, June 1987.

[6] Nevin Heintze, Spiro Michaylov, and Peter Stuckey. CLP(R) and some electrical en-
gineering problems. In Jean-Louis Lassez, editor, Logic Programming: Proceedings of
the 4th International Conference, pages 675–703, Melbourne, Victoria, Australia, May
1987. MIT Press. Also to appear in Journal of Automated Reasoning.

[7] Nevin Heintze, Spiro Michaylov, Peter Stuckey, and Roland Yap. On meta-programming
in CLP(R). In Ewing Lusk and Ross Overbeek, editors, Logic Programming: Proceedings
of the North American Conference, 1989, pages 52–68. MIT Press, October 1989.

[8] D. S. Homiak. A constraint logic programming system for solving partial differential
equations with applications in options valuation. Master’s project, DePaul University,
1991.

63

BIBLIOGRAPHY 64

[9] Joseph C. Tobias II. Knowledge representation in the Harmony intelligent tutoringsys-
tem. Master’s thesis, Department of Computer Science, University of California at Los
Angeles, 1988.

[10] Joxan Jaffar and Jean-Louis Lassez. Constraint logic programming. In Proceedings of
the 14th ACM Symposium on Principles of Programming Languages, Munich, Germany,
pages 111–119. ACM, January 1987.

[11] Joxan Jaffar, Michael Maher, Peter Stuckey, and Roland Yap. Output in CLP(R).
In Proceedings of the 1992 Conference on Fifth Generation Computer Systems, Tokyo,
1992.

[12] Joxan Jaffar and Spiro Michaylov. Methodology and implementation of a CLP system.
In Jean-Louis Lassez, editor, Logic Programming: Proceedings of the 4th International
Conference, pages 196–218, Melbourne, Australia, May 1987. MIT Press. Revised ver-
sion of Monash University technical report number 86/75, November 1986.

[13] Joxan Jaffar, Spiro Michaylov, Peter J. Stuckey, and Roland H. C. Yap. The CLP(R)
language and system. ACM Transactions on Programming Languages and Systems
(TOPLAS), 14(3):339–395, July 1992.

[14] Joxan Jaffar, Spiro Michaylov, and Roland Yap. A methodology for managing hard
constraints in CLP systems. In Proceedings of the ACM SIGPLAN Symposium on
Programming Language Design and Implementation, pages 306–316, Toronto, Canada,
June 1991.

[15] Sivand Lakmazaheri and William J. Rasdorf. Constraint logic programming for the
analysis and partial synthesis of truss structures. Artificial Intelligence for Engineering
Design, Analysis, and Manufacturing, 3(3):157–173, 1989.

[16] Catherine Lassez, Ken McAloon, and Roland Yap. Constraint logic programming and
options trading. IEEE Expert, Special Issue on Financial Software, 2(3):42–50, August
1987.

[17] T.G. Lindholm and R. A. O’Keefe. Efficient implementation of a defensible semantics
for dynamic prolog code. In Logic Programming: Proceedings of the 4th International
Conference, pages 21–39. MIT Press, May 1987.

[18] Igor Mozetič and Christian Holzbaur. Integrating numerical and qualitative models
within constraint logic programming. In Logic Programming: Proceedings of the 1991
International Symposium, pages 678–693, October 1991.

[19] A. Schrijver. Theory of Linear and Integer Programming. Wiley and Sons, 1986.

[20] L. Sterling and E. Y. Shapiro. The Art of Prolog. MIT Press, 1986.

BIBLIOGRAPHY 65

[21] T. Sthanusubramonian. A transformational approach to configuration design. Master’s
thesis, Engineering Design Research Center, Carnegie Mellon University, 1991.

[22] Roland Yap Hock Chuan. Restriction site mapping in CLP(R). In Koichi Furukawa,
editor, Proceedings of the Eighth International Conference on Logic Programming, pages
521–534, Paris, France, June 1991. MIT Press.

[23] Ricky Yeung. Mpl - a graphical programming environment for matrix processing based
on logic and constraints. In IEEE Workshop of Visual Languages, pages 137–143. IEEE
Computer Society Press, October 1988.

[24] Edward K. Yu. MODIC: A program for model-based diagnosis that uses constraint logic
programming. Master’s thesis, Department of Computer Science, University of South
Carolina (Columbia), 1991.

Index

*/2, 55
,/2, 47
->;/3, 47
;/2, 47
=../2, 49
==/2, 48
[‘· · ·], 46
[· · ·], 45
$call/1, 54
$clear style check, 54
abort/0, 52
abs/1, 13, 55
add counter/2, 55
arccos/1, 13, 55
arcsin/1, 13, 55
arg/3, 49
arithmetic/1, 49
assert/1, 18, 41, 46
asserta/1, 46
assertz/1, 46
atom/1, 48
atomic/1, 49
call/1, 48
clpr/0, 52
codegen debug/0, 42
codegen nodebug/0, 42
consult/1, 45
cos/1, 13, 55
counter value/2, 55
csh/0, 52
ctime/0, 53
deny/2, 46
discontiguous, 53, 54
dump/1, 23, 50
dump/2, 23, 50

dump/3, 23, 48
dynamic/2, 49
edit/1, 52
eval/1, 15
fail/0, 47
fassert/1, 54
fasserta/1, 54
fassertz/1, 54
floor/2, 49
flush/0, 52
fork/0, 52
functor/1, 49
functor/3, 49
ground/1, 48
h/0, 53
halt/0, 52
history/0, 53
history/1, 53
implicit/0, 55
listing/0, 45
listing/1, 45
ls/0, 45
ls/1, 45
max/2, 13, 55
min/2, 13, 55
more/1, 52
name overload, 53, 54
new constant, 53
nl/0, 50
no style check/1, 54
noimplicit/0, 55
nonground/1, 48
nonvar/1, 48
nospy/0, 43
nospy/1, 43

66

INDEX 67

nospy/2, 43
notrace/0, 43
occurs/2, 49
once/1, 48
op/3, 45
oracle/3, 53
partial implicit/0, 55
pipe/1, 52
pow/2, 13, 55
print/1, 50
printf/2, 50
printf to atom/3, 51
prot/1, 47
prot/2, 47
quote/1, 15
rand/1, 53
read/1, 51
real/1, 49
reconsult/1, 46
repeat/0, 47
reset all, 54
retract/1, 18, 41, 46
retractall/0, 46
retractall/1, 46
rule/2, 18, 46
see/1, 51
seeing/1, 51
seen/0, 51
set counter/2, 55
sh/0, 52
sin/1, 13, 55
single var, 53, 54
spy/0, 42
spy/1, 43
spy/2, 42
srand/1, 53
style check/1, 53
symbolic constants, 53
tell/1, 51
telling/1, 51
told/0, 52
trace/0, 43

true/0, 47
var/1, 48
warning/1, 54
write/1, 50
writeln/1, 50
ztime/0, 53
!/0, 47

abort, 54
analog to clause, 18
analog to retract, 18
answer constraints, 33
arithmetic constraint, 6
arithmetic term, 5
assert, 42, 44

bootstrap, 60
bug reports, 62

clam files, 31
clause, 18
CLPRLIB, 31, 61
CLPRSUFFIX, 32
code space, 32
command line arguments, 32
comments, 3
constraint, 6
consulted files, 40
contiguous, 53, 54
continue, 54
counter, 55

debugging, 42
delayed constraint, 12, 13, 33, 55
disjunction, 43
dump, 20, 23
dynamic code, 41, 43

Environment variables, 31, 32
errors, 54
eval, 16, 17

fassert, 44
file names, 32

INDEX 68

functor constraint, 6
functor term, 5

garbage collection, 44
goal, 3
goals, 33, 41

heap, 32

if-then-else, 43
implicit dump, 33
implicit equalities, 44
indexing, 43
init.clpr, 31, 60, 61
installation guide, 58
installation options, 58

LIBPATH, 61
local stack, 32

meta-programming, 15
Monash interpreter, 69

nonlinear constraint, 12, 33, 55
notation conventions, 2

operational model, 13
operators, 56
Out of range errors, 55
output, 20

portability, 58
pre-defined operators, 56
program, 3
projection, 20
prot, 41

queries, 33
quote, 15, 17

random number seed, 32
redefine off, 54
redefine on, 54
retract, 42
rule, 3, 42

sample session, 35
singleton variable, 53, 54
solver variables, 32
static code, 41
statistics, 53
style checking, 34
suffix, 32, 60
system parameters, 60

tail recursion, 43
target variables, 20, 23
trail, 32
type, 8

warning, 34, 54
warning off, 54
warning on, 54

zero, 32, 60

Appendix A

Differences from the Monash
Interpreter

Here we only list those facilities from the Monash interpreter that are not supported.

• The issue of string handling has not yet been settled.

• Predicate definitions cannot be indiscriminately spread over a number of files.

• There is no automatic variable generation for answer projection; there is no dump/0

predicate.

• Goals result in a prompt for alternate solutions whenever there is a choice point,
regardless of whether there are variables in the goal.

• No profiling; the predicates prof/0 and noprof/0 are not available.

• Sytem warnings are controlled differently using warning/1.

• Linear inequalities are always decided immediately rather than delayed; the predicates
ineq/0 and noineq/0 are not available.

• Statistics are now available through special system predicates, so the stats/0 system
predicate, while may exist, is not supported.

• There is no is/2 predicate.

69

