
CSE 341: Programming Languages
Course Information and Syllabus

Winter 2005

Logistics and Contact Information: The instructor is Hal Perkins. See the course homepage (www.cs.washington.edu/education/courses/cse341/05wi)
for information regarding teaching assistants, office hours, sections, etc. You must join the class email list
and check email at least once every 24 hours.

Goals: Successful course participants will:

• Internalize an accurate understanding of what functional and object-oriented programs mean

• Develop the skills necessary to learn new programming languages quickly

• Master specific language concepts such that they can recognize them in strange guises

• Learn to evaluate the power and elegance of programming languages and their constructs

• Attain reasonable proficiency in ML, Scheme, and Smalltalk

• As a by-product, become more proficient in languages they already know

Text: The “required” text is: “Jeffrey D. Ullman. Elements of ML Programming, ML’97 Edition. 1998.” We
will not follow the text closely, but it will likely prove useful during the first few weeks. The “recommended”
text is: “Mark Guzdial. Squeak: Object-Oriented Design with Multimedia Applications. 2001.” We will
cover only material corresponding to the first two chapters and online resources may suffice. You must decide
how much you benefit from having a book in your hand. There is no text for the Scheme portion of the
course; online resources will suffice.

Grading and Exams:

Midterm 20% Monday, February 7 (tentative, in class)
Final 25% Wednesday, March 16, 8:30–10:20
Homeworks 55% approximately weekly

Unless announced otherwise, all homeworks contribute equally to the 55%.
Do not miss the midterm or final.

Late Policy: Homework will always be due at 9:00AM on the due date. This deadline is strict. Therefore, it
is exceedingly unlikely that skipping class or being late to class because of homework is in your interest. For
the entire quarter, you may have three “late days”. You are strongly advised to save them for emergencies.
You may not use more than two for the same assignment. They must be used in 24-hour chunks.

Academic Integrity: Any attempt to misrepresent the work you did will be dealt with via the appropriate
University mechanisms, and your instructor will make every attempt to ensure the harshest allowable penalty.
The guidelines for this course and more information about academic integrity are in a separate document.
You are responsible for knowing the information in that document.

Advice:

• In every course, there is a danger that you will not learn much and therefore lose the most important
reason to take the course. In 341, this danger is severe because it is easy to get “distracted by
unfamiliar surroundings” and never focus on the concepts you need to learn. These surroundings
include new syntax, programming environments, error messages, etc. Becoming comfortable with
them and appreciating their importance is only one aspect of this course, so you must get past it.
When we move to a new language, you must spend time on your own “getting comfortable” in the new
setting as quickly as possible so you do not start ignoring the course material.

1



• If you approach the course by saying, “I will have fun learning to think in new ways” then you will do
well. If you instead say, “I will try to fit everything I see into the way I already look at programming”
then you will get frustrated.

Approximate Topic Schedule (Subject to Change):

1. Syntax vs. semantics vs. idioms vs. libraries vs. tools

2. ML basics (bindings, conditionals, records, functions)

3. Recursive functions and recursive types

4. Datatypes, pattern matching, exceptions

5. Higher-order functions

6. Lexical vs. dynamic scope

7. Currying

8. References and cycles

9. Syntactic sugar

10. Equivalence and effects

11. Abstract types and modules

12. Parametric polymorphism and container types

13. Type inference

14. Scheme basics

15. Dynamic vs. static typing

16. Laziness and memoization

17. Implementing higher-order functions

18. Continuation-passing idioms

19. Macros

20. Abstract datatypes with dynamic typing

21. Smalltalk and Squeak basics

22. Object-oriented programming is dynamic dispatch

23. Pure object-orientation

24. Implementing dynamic dispatch

25. Subtyping for records, functions, and objects

26. Class-based subtyping

27. Fragile superclasses, multiple inheritance

28. Unexpected change via subclassing

29. Multimethods

30. Static overloading

31. Relating concepts to Java

32. Subtype vs. bounded quantification

33. Contrasting extensibility with object-orientation and datatypes

2



34. Basic garbage-collection implementation

To learn these concepts using real programming languages and to gain experience with different languages,
we will use:

• Standard ML (a statically typed, mostly functional language) (approximately 4–5 weeks)

• Scheme (a dynamically typed, mostly functional language) (approximately 2–3 weeks)

• Smalltalk (a dynamically typed, object-oriented language) (approxmately 2 weeks)

• Java (a statically typed, object-oriented language) (less than 1 week)

There are thousands of languages not on this list, and many programming paradigms not represented.

3


