CSE 341:
Programming Languages

Winter 2005
Lecture 7— Motivation and First-Class Functions
Today

• Finish course motivation

• Summarize what we’ve learned with a concise and well-known notation for recursively-defined language constructs

• Begin first-class functions
Why these 3?

Functional programming (ML, Scheme) encourages recursion, discourages mutation, provides elegant, lightweight support for first-class code. Support for extensibility complements OO.

- ML has a polymorphic type system (vindication imminent!) complementary to OO-style subtyping, a rich module system for abstract types, and rich pattern-matching.

- Scheme has dynamic typing, “good” macros, fascinating control operators, and a minimalist design.

- Smalltalk has classes but not types, an unconventional environment, and a complete commitment to OO.

Runners-up: Haskell (laziness and purity), Prolog (unification and backtracking), thousands of others...
Why not some popular ones?

- Java: you know it, will contrast at end of course (e.g., interfaces, anonymous inner classes, container types)
- C: lots of "implementation-dependent" behavior (a bad property), and we have CSE303
- C++: an enormous language, and unsafe like C
- Perl: advantages (strings, files, ...) not foci of this course. Python or Ruby would be closer.
Are these useful?

The way we use ML/Scheme/Smalltalk in 341 can make them seem almost “silly” precisely because we focus on *interesting language concepts*.

“Real” programming needs file I/O, strings, floating-point, graphics libraries, project managers, unit testers, threads, foreign-function interfaces, ...

- These languages have all that and more!
- If Java were in 341, it would seem “silly” too

Somewhat outdated links:

- OCaml: http://caml.inria.fr/users_programs-eng.html
Summary and Some Notation

Learned the syntax, typing rules, and semantics for (a big) part of ML

Can summarize abstract syntax with (E)BNF. Informally:

\[
\begin{align*}
t & ::= \text{int} \mid \text{bool} \mid \text{unit} \mid \text{dtname} \\
& \quad \mid t_1 \rightarrow t_2 \mid t_1 \ast t_2 \mid \{x_1=t_1, \ldots, x_n=t_n\} \\
e & ::= 34 \mid x \mid (e_1,e_2) \mid \text{if } e_1 \text{ then } e_2 \text{ else } e_3 \\
& \quad \mid \text{let } b_1 \ldots b_n \text{ in } e \text{ end} \mid e_1 e_2 \\
& \quad \mid \text{case } e \text{ of } p_1 \Rightarrow e_1 \mid \ldots \mid p_n \Rightarrow e_n \\
& \quad \mid e_1 + e_2 \mid \{x_1=e_1, \ldots, x_n=e_n\} \mid C e \\
b & ::= \text{val } p = e \mid \text{fun } f \text{ p } = e \\
& \quad \mid \text{datatype } \text{dtname} = C_1 \text{ of } t_1 \mid \ldots \mid C_n \text{ of } t_n \\
p & ::= 34 \mid x \mid _{} \mid C p \mid (p_1,p_2) \mid \{x_1=p_1, \ldots, x_n=p_n\}
\end{align*}
\]

Things left out of this grammar: \(n\)-tuples, field-accessors, floating-point, boolean constants, andalso/orelse, lists, ...
First-Class Functions

• Functions are values. (Variables in the environment are bound to them.)

• We can pass functions to other functions.
 – *Factor* common parts and *abstract* different parts.

• Most polymorphic functions take functions as arguments.
 – Non-example: `fun f x = 42`

• Some functions taking functions are polymorphic.
Type Inference and Polymorphism

ML can infer function types based on function bodies. Possibilities:

- The argument/result must be one specific type.
- The argument/result can be *any* type, but may have to be the *same type* as other parts of argument/result.
- Some hand-waving about “equality types”

We will study this *parametric polymorphism* more later.

Without it, ML would be a pain (e.g., a different list library for every list-element type).

Fascinating: If $f:\text{int} \rightarrow \text{int}$, there are lots of values f could return. If $f:\text{’a} \rightarrow \text{’a}$, whenever f returns, it returns its argument!
Anonymous Functions

As usual, we can write functions anywhere we write expressions.

- We already could:

 \[(\text{let fun } f \ x = e \ \text{in } f \ \text{end})\]

- Here is a more concise way (better style when possible):

 \[(\text{fn } x \Rightarrow e)\]

- Cannot do this for recursive functions (why?)
Returning Functions

Syntax note: \(\rightarrow \) “associates to the right”

- \(t_1 \rightarrow t_2 \rightarrow t_3 \) means \(t_1 \rightarrow (t_2 \rightarrow t_3) \)

Again, there is nothing new here.

The key question: What about free variables in a function value? What environment do we use to evaluate them?

Are such free variables useful?

You must understand the answers to move beyond being a novice programmer.