CSE 341:
Programming Languages

Winter 2005
Lecture 10—Mutual Recursion, Equivalence and Syntactic Sugar
Mutual Recursion

We haven’t yet seen how multiple functions can recursively call each other? (Why can’t we do this with what we have?)

ML uses the keyword and to provide different scope rules. Example:

\begin{verbatim}
fun even i = if i=0 then true else odd (i-1)
and odd i = if i=0 then false else even (i-1)
\end{verbatim}

Roughly extends the binding form for functions from \texttt{fun f1 x1 = e1}
to \texttt{fun f1 x1 = e1 and f2 x2 = e2 and \ldots and fn xn = en}.

Actually, you can have \texttt{val} bindings too, but bindings being defined are in scope only inside function bodies. (Why?)

Syntax gotcha: Easy to forget that you write \texttt{and fi xi = ei}, not \texttt{and fun fi xi = ei}.

Mutual Recursion Idioms

1. Encode a state machine (see product_sign example)
 • Sometimes easier to understand than explicit state values.

2. Process mutually recursive types, example:

 datatype webtext = Empty
 | Link of webpage * string * webtext
 | Word of string * webtext

 and webpage = Found of string * webtext
 | Unfound of string

 A function “crawl for word” is inherently mutually recursive. (You
could make a datatype for “webtext or webpage”, but that’s ugly.)
Problem: the Web has cycles, which (sigh) is a common need for
mutation in ML.
Unproblem: When crawling, we don’t want cycles (use Unfound if
we have seen the page before).
Where are We

- We have covered enough basics to focus more on concepts now
- Before Scheme: Equivalence, parametric polymorphism, type inference, modules/abstract-types
- Homework 3 out tomorrow (today?), due Feb. 3 (do not wait)
- Midterm exam Monday Feb. 7 (more info later)
Equivalence

“Equivalence” is a fundamental programming concept

- Code maintenance / backward-compatibility
- Program verification
- Program optimization
- Abstraction and strong interfaces

But what does it mean for an expression (or program) e_1 to be “equivalent” to expression e_2?
First equivalence notion

Context (i.e., “where equivalent”)

- Given where e_1 occurs in a program e, replacing e_1 with e_2 makes a program e' equivalent to e

- At any point in any program, replacing e_1 with e_2 makes an equivalent program.

The latter (contextual equivalence) is much more interesting.

For the former, the body of an unused function body is equivalent to everything (that typechecks).
Second equivalence notion

“how equivalent”

• “partial”: e and e' are equivalent if they input and output the same data (any limits on input?)

• “total”: partial plus e and e' have the same termination behavior

• efficiency: e and e' are totally equivalent and one never takes more than (for example) c times longer than the other (or uses much more space or ...)

• syntactic notions: e and e' differ only in whitespace and comments (for example)

Key notion: what is observable? (memory, clock, REP-loop, file-system, ...)
Accounting for “Effects”

Consider whether \(\text{fn } x \Rightarrow e_1 \) and \(\text{fn } x \Rightarrow e_2 \) are totally contextually equivalent.

Is this enough? For all environments, \(e_1 \) terminates and evaluates to \(v \) under the environments if and only if \(e_2 \) terminates and evaluates to \(v \) under the environment.

We must also consider any effects the function may have.

Purely functional languages have fewer/none, but ML is not purely functional.

In real languages, contextual equivalence usually requires many things. Nonetheless, “equivalence” usually means total contextual equivalence for practical purposes (optimization, reasoning about correctness, etc.).
Syntactic Sugar

When all expressions using one construct are totally equivalent to another more primitive construct, we say the former is “syntactic sugar”.

- Makes language definition easier
- Makes language implementation easier

Examples:

- `e1 andalso e2` (define as a conditional)
- `if e1 then e2 else e3` (define as a case)
- `fun f x y = e` (define with an anonymous function)
More sugar

#1 e is just \[
\begin{align*}
&\text{let val } (x, \ldots) = e \text{ in } x \text{ end} \\
\end{align*}
\]

If we ignore types, then we have even more sugar:

\[
\begin{align*}
&\text{let val } p = e_1 \text{ in } e_2 \text{ end is just } (fn \ p \Rightarrow e_2) \ e_1.
\end{align*}
\]

In fact, if we let every program type-check (or just use one big datatype), then a language with just functions and function application is as powerful as ML or Java (in the Turing Tarpit sense).

This language is called “lambda calculus” – we’ll learn a bit more about it later.
Equivalences for Functions

While sugar defines one construct in terms of another, there are also important notions of *meaning-preserving* changes involving functions and bound variables.

They’re so important that a goal of language design is that a language supports them.

But the correct definitions are subtle.

First example: systematic renaming

Is \(\text{fn } x \Rightarrow e1 \) is equivalent to \(\text{fn } y \Rightarrow e2 \) where \(e2 \) is \(e1 \) with every \(x \) replaced by \(y \)?
Systematic renaming requires care

Is \(\text{fn } x \Rightarrow e_1 \) is equivalent to \(\text{fn } y \Rightarrow e_2 \) where \(e_2 \) is \(e_1 \) with every \(x \) replaced by \(y \)?

What if \(e_1 \) is \(y \)?

What if \(e_1 \) is \(\text{fn } x \Rightarrow x \)?

Need caveats: \(\text{fn } x \Rightarrow e_1 \) is equivalent to \(\text{fn } y \Rightarrow e_2 \) where \(e_2 \) is \(e_1 \) with every \textit{free} \(x \) replaced by \(y \) and \(y \) is not \textit{free} in \(e_1 \).

Note: We can provide a very precise recursive (meta-)definition of \textit{free variables} in an expression.

Next: Is \((\text{fn } x \Rightarrow e_1) \ e_2 \) equivalent to \(e_3 \) where \(e_3 \) is \(e_1 \) with every \(x \) replaced by \(e_2 \)?
Argument Substitution

Is \((\text{fn } x \Rightarrow e1) \ e2\) equivalent to \(e3\) where \(e3\) is \(e1\) with every \(x\) replaced by \(e2\)?

• Every free \(x\) (of course).
• A free variable in \(e2\) must not be bound at an occurrence of \(x\).
 (Called “capture”.)
 – Always satisfiable by renaming bound variables.
• Evaluating \(e2\) must have no effects (printing, exceptions, infinite-loop, etc.)
 – Closely tied to the rule that arguments are evaluated to values before function application. (Not true for all languages)
 – In ML, many expressions have no such effects (\(x, \#\text{foo } x, \ldots\)); much fewer in Java.
• Efficiency? Could be faster or slower. (Why?)
Unnecessary Function Wrapping

A common source of bad style for beginners

Is \(e_1 \) equivalent to \(\text{fn} \ x \Rightarrow e_1 \ x \) ?

Sure, provided:

- \(e_1 \) is effect-free
- \(x \) does not occur free in \(e_1 \)

Example:

\[
\begin{align*}
\text{List.map (fn x => SOME x) lst} \\
\text{List.map SOME lst}
\end{align*}
\]
Summary

We breezed through some core programming-language facts and design goals:

- Definition of equivalence depends on observable behavior
- Syntactic sugar “makes a big language smaller” by defining constructs in terms of equivalence
- Notion of free and bound variables crucial to understanding function equivalence.
- Three common forms of function equivalence:
 - Systematic Renaming
 - Argument Substitution
 - Unnecessary Function Wrapping