
CSE 341, Winter 2005, Assignment 3
Due: Thursday, February 3, 10:00 PM

Last updated: 01-29-05

This assignment consists of two parts; the first deals with a simple list manipulation language, and the second uses
closures in the context of calculus. In total, there are 7 functions to implement that aren’t trivial uses of other functions.
Start early and make sure you are comfortable with closures and higher-order functions. The sample solution is about
100 lines long.

Part I

List manipulation language
We will define a small language for performing operations on lines of dominoes. Each operation acts on apair of
lines. You will use the following definitions in your solutions. A bone is represented as it was in homework 1 and 2:

type bone = int * int

A line is simply a list of bones:

type line = bone list

There are several operations we will define on a pair of lines. We can take the first bone of the left line and push it
onto the front of the right line and vice versa (think “stack”), we can swap the first bones in the lines, and we can apply
some arbitrary function to the first bone in either the left or right line and replace it with the result. Formally:

datatype lineop =
PushRight (*Take element from left, push it onto right *)

| PushLeft (*Take element from right, push it onto left*)
| SwapFirst (* Take first bone from each line and swap them*)
| ApplyRight of bone -> bone (*Apply function to first bone on the right*)
| ApplyLeft of bone -> bone (*Apply function to first bone on the left*)

A program is a list of operations, applied in order to the two lines:

type lineprog = lineop list

Using these definitions, do the following:

1. Write a functionlineop_func that takes a lineoplop and returns a function which, when invoked with a pair
of lines, returns the pair of lines that result from applying the operationlop. An operation that would attempt
to manipulate (or remove) the first bone in an empty line should raise the exceptionEmpty. For example,
PushRight on the pair([],[(1,0)]) should raise an exception, because there is no bone in the left line to
move to the right.PushLeft on the same pair is legal.

1



2. Write a functionlineprog_func that takes a lineprogprog and returns a function which, when invoked with a
pair of lines, returns the pair of lines that result from applying the operations inprog in order. For an elegant
solution, use SML higher-order library functions such asList.map andList.foldl and the built-in function
composite operatoro (that’s a small letter ’o’). The sample solution is only 1 line. Solutions that work but do
not make use of higher order functionswill lose style points.

3. Write a functionpushn_right_safe that takes an integern and returns a lineprog which pushes the firstn bones
in the left line onto the right line, but also ensures that the sides of then bones that were originally touching are
still touching afterwards. The bones that are moved will end up in reverse order; you do not have to attempt to
prevent this from happening.

4. Write a functionpushn_right_block that takes an integern and returns a lineprog which pushes the firstn
bones in the left line onto the right lineas a block. That is, the bones should end up in the same order they
started in. Keep in mind that simply doingn PushRight operations will reverse the order of the bones, so you
must somehow prevent this. Sitting down with pencil and paper and working out an algorithm before you begin
coding is advisable. Use helper functions and the list append operator@ to make your life easier.

5. Write a functionlineprog_mirror which takes a lineprogprog and returns another lineprog which performs
the mirror image of the operations inprog; that is, an operation that operates on the left line must instead operate
on the right, and vice versa.

6. Uselineprog_mirror to define two more functions,pushn_left_safe andpushn_left_block, which work
as you would expect. Useval bindings instead offun bindings, and don’t introduce anonymous functions with
fn. Hint: you will need to use a higher-order function.

7. (Extra credit ) Write a functionlineprog_optimize which takes a lineprogprog and returns another lineprog
which performs the same transformation on a pair of lines, but contains fewer operations. It may return a
lineprog of the same size if no optimization is possible, but the size of the lineprog must not increase. Try to
detect and simplify as many optimizable patterns as possible.

Sample output

- lineprog_func (pushn_left_block 3) ([],[(1,2),(2,3),(3,4),(0,0)]);
val it = ([(1,2),(2,3),(3,4)],[(0,0)]) : bone list * bone list

2



Part II

Calculus
You will write two functions (and a third trivial one) that calculate the derivative or integral of a function operating on
real numbers. The algorithms to do this numerically will be presented here in case your calculus is rusty.

Recall that the derivative of a function is the slope of the function at a particular point, defined as:

f ′(x) =
d
dx

f (x) =
lim

∆x→ 0
f (x+∆x)− f (x)

∆x

To approximate a derivative numerically, you can simply choose some∆x close to 0 instead of taking the limit.
Approximating an integral is somewhat more complicated:

For a functionf (x) over the interval[a,b], divide the interval inton subintervals of width∆x = b−a
n , and choose a

point from each intervalxi . The definite integral is:Z b

a
f (x)dx=

lim
n→ ∞

n

∑
i=1

f (xi)∆x

As n approaches infinity, the result approaches the true integral, so we can pick a very largen, iterate through
values of x betweena andb in increments of∆x, find the value off at each x and multiply by∆x, and then sum the
terms. There are other methods, such as the trapezoid method, that give more accurate results; if you know them, you
may use them instead of the algorithm here. The definition of an indefinite integral is simple once the definite integral
is defined. LetF(b) be the indefinite integral off (x). It is defined as:

F(b) =
Z

f (x)dx=
Z b

0
f (x)dx

We can define some useful constants to make writing the functions easier:

val bigNumber = 100000.0
val smallNumber = 1.0 / bigNumber

A module to allow you to display graphs of your functions has been provided. This is a useful visualization tool to
ensure that your functions are working properly. To use it, you first need to import the provided code:

use "hw3-provided.sml"

To print a graph to the screen, simply do:

Grapher.graph (f)

Wheref is a function of type real -> real.

1. Write a function derivative that takes a functionf of typereal->real and returns a function of typereal->real
which evaluates to the derivative off (x) when invoked with somereal x. That is, write a curried function
derivative f x.

2. Write a curried functiondef_integral f a b that returns the integral off (x) betweena andb. You can use
the special syntaxfun def_integral f a b = ... for convenience.

3. Write a functionintegral that takes a functionf and returns the indefinite integral off (x). Usedef_integral
in your solution.

3



Sample output

- Grapher.graph (derivative (fn x => 10.0/x));
|
|
|
|
|
|
|
|
|
|
|
|
|
|

oooooooooooooooo------------------+------------------ooooooooooooooo
oooooooo | oooooooo

oo | oo
oo | oo

|
o | o

|
o | o

|
|

o | o
|
|
|
|

Type Summary

A correct solution will cause these bindings to be printed in the read-eval-print loop:

type bone = int * int
datatype lineop
= ApplyLeft of int * int -> int * int
| ApplyRight of int * int -> int * int
| PushLeft
| PushRight
| SwapFirst

type lineprog = lineop list
val lineop_func = fn : lineop -> bone list * bone list -> bone list * bone list
val lineprog_func = fn
: lineop list -> bone list * bone list -> bone list * bone list

val pushn_right_safe = fn : int -> lineop list
val pushn_right_block = fn : int -> lineop list
val lineprog_mirror = fn : lineop list -> lineop list
val pushn_left_safe = fn : int -> lineop list
val pushn_left_block = fn : int -> lineop list
val derivative = fn : (real -> real) -> real -> real

4



val def_integral = fn : (real -> real) -> real -> real -> real
val integral = fn : (real -> real) -> real -> real

Getting these bindings does not necessarily mean your solution is correct. Also, the bindings you get may not look
exactly like these due to type synonyms.

Assessment

• Your solution should generate correct bindings and give correct results.

• You must use pattern matching. Do not use the functionsnull, hd, tl, or anything starting with#.

• Do not use mutation, even if you know how.

• Don’t worry about gracefully handling non-continuous functions in the calculus section. The grapher will do its
best to draw them, but don’t expect the integral to look very impressive.

Turn-in Instructions

Use the turn-in form linked from the course website.

5


