CSE 341, Winter 2005, Assignment 2
Due: Thursday, January 27, 10:00 PM

Last updated: 01-20-05

You will continue with the theme of dominoes by writing several functions dealing with actual game play. There
are many variations on dominoes, but you will be implementing the one described here, which is a combination of
several variations designed for this assignment. In this game, each player has a “hand” of bones available to them to
play. Players take turns placing bones end to end into a chain called a “layout.” When the game first starts, the layout
is empty, and any bone may be played. After that, the layout will have a left and a right side on which additional bones
may be played, with the restriction that bones played end to end must have the same number of pips on the touching
sides of the bones. A deck of bones is also used during the game. If a player does not have a bone that can be played,
or wishes to not play a bone, they may draw another bone from the top of the deck and add it to their hand. If no
bones remain in the deck, the player can simply pass instead, doing nothing on their turn. In this variation, a player
can either draw a single bone from the deck or play a bone in a turn, but not both. The object of the game is to be the
first player to get rid all bones in their hand. All other information and terminology you need to know can be found in
homework 1.

You will use the following definitions in your solutions. A bone is represented as it was in homework 1:

type bone = int * int

A hand is a list of bones, where neither the orientation of the bones nor the order of the bones matters. A deck is also a
list of bones, where the orientation of the bones is unimportant, but the order of the bones matters. A layout is a list of
bones as well, where both orientation and order of the bones matters. To distinguish these three concepts, we will use
3 different types. Keep in mind that these types are all synonymous; the names are only for convenience and clarity.

type hand = bone list
type deck = bone list
type layout = bone list

A move is either playing the first bone of the game, or playing a bone on the left or right side of the layout, or
drawing/passing when no bone can be played.

datatype move = PlayFirst of bone
| PlayLeft of bone

| PlayRight of bone
\

PassDraw

Sometimes a move will be illegal during game play. In such a case, a function might wish to indicate this by raising
an exception:

exception BadMove
Using these definitions, do the following:

1. Write a functionfind_playable that takes a hand and a suits and returns a value of typsne option. If
no bone of suit exists inh, find_playable should returmioNE. If at least one bone of suitexists inh, then
find_playable should returrsoME of that bone. If more than one such bone exists in syitick an arbitrary
bone to return.

2. Write a functionwithout_bone that takes a hand and a bone», and returns a hand with one instanceoof
removed, if any exist. For this function, orientation of the bones is unimportant,tS@ut_bone ([(1,2) 1,
(2,1)) must return the empty list]. Your implementation must be tail recursive. This means you will need
to use an accumulator-style recursive helper function. Your solution may only call this helper function as well
as built-in operators, except for the list append operator, which you may noitlirde the order of bones in a
hand is unimportant, so the hand you return doesn’t have to be in the same order as you hand you receive.

3. Write a functionlayout_summary that takes a layout and returns a value of typeint * int) option. If
the layout is empty]l ayout_summary should returmiONE. Otherwise, it should retursoME (%, y), wherex is
the number of pips on the left side of the leftmost bone in the layoutydadhe number of pips on the right
side of the rightmost bone in the layout.

4. Write a functionbest_move that takes a layout and a hanch and returns a value of typeove using the
following criteria:

¢ If the layout is emptypbest_move must returrplayFirst of an arbitrary bone im. If h is also empty,
best_move must returreassDraw.

¢ If the layout is not empty, and a boneexists inh that could be played on either end of the layout,
best_move must returrplayLeft (b) Or PlayRight (b) as appropriate.

o If the layout is not empty, but no bone existshithat could be played on either end of the layouth @s
empty,best_move must returreassDraw.

This function need not implement any sort of strategy. Used_playable and layout_summary in your
solution.

5. Write a functiordo_move that takes a layodit, a deckd, a handh, and a moven, and returns a tuplélprime,
dprime, hprime) of typelayout * deck * hand. 1, d, andh represent the layout, deck, and player’'s hand
before a move is madeprime, dprime, andhprime must represent the layout, deck, and player’s hand after
the moven is made. Specifically:

e If the movem is PassDraw, and the deck is not empty, then the first bone in the deck must be removed and
placed in the player's hand. Otherwise, no change occurs.

e Ifthe movemisPlayFirst of boneb, and the layout is not empty, brdoes not exist in the player’s hand,
then the exceptioBadMove must be raised. Otherwise, the banenust be removed from the player’s
hand and placed as the only bone in the layout.

e If the movem is aPlayLeft or PlayRight of boneb, and bone does not exist in the player’s hand, or
boneb is not playable on the indicated side of the lay@atjMove must be raised. If the layout is empty,
BadMove must be raised. Otherwise, the baneust be removed from the player's hand and placed on the
left or right side of the layout as appropriate the correct orientation You may use the built in append
operatore.

Remember that you are not using mutation, so when it says that you must “remove” a bone from the player's
hand and place it in the layout, for example, it means that the bone should appeatir but be absent from
hprime. To give a concrete exampléy_move ([(1,2) 1, [1,[(5,2), (3,0)1,PlayRight (5,2)) must return
([(1,2)(2,5)1,11,0(3,0)1), which is what the state of the layout, player's hand, and deck would be after
playing (5, 2) on the right side of the layout. Make usewifthout_bone and possiblylayout_summary in

your solution.This function is complex use helper functions and pattern match aggressively.

Type Summary

A correct solution will cause these bindings to be printed in the read-eval-print loop:

type bone = int * int
type hand = bone list
type deck = bone list
type layout = bone list
datatype move
= PassDraw
| PlayFirst of int * int
| PlayLeft of int * int
| PlayRight of int * int
exception BadMove
val find_playable = fn : hand * int -> (int * int) option
val without_bone = fn : hand * bone -> (int * int) list
val layout_summary = fn : layout -> (int * int) option
val best_move = fn : layout * hand -> move
val do_move = fn : layout * deck * hand * move -> layout * deck * hand

Getting these bindings does not necessarily mean your solution is correct. Also, the bindings you get may not look
exactly like these due to type synonyms. Also, depending on how you solve problem 2, it might have a polymorphic
type. Be sure to test your code.

Assessment

e Your solution should generate correct bindings and give correct results.

e For this assignment, you must use pattern matching. Do not use the funaiions.d, t1, isSome or anything
starting with#. You may use the functionalof when it is impossible to call it on BONE value. Hint: this is
useful in conjunction withayout_summary , but you must be sure thityout_ summary did not return
NONE.Remember that you can't ugsome , so you must know something about wlagbut_summary
was called with...

e Do not use mutation, even if you know how.

Turn-in Instructions

Use the turn-in form linked from the course website.

