
CSE 341, Winter 2005, Assignment 1
Due: Tuesday, January 18, 10:00 PM

Last updated: 01-13-05

You will write several SML functions having to do with dominoes. All domino knowledge necessary for this
assignment will be provided. A domino is a small, rectangular tile (called a “bone”) divided into two square halves.
A number of small dots (called “pips”), from 0 to 6, occupy each half. Bones with a different number of pips on
each side are called “singles”, while bones with the same number of pips on both sides are called “doubles.” During
game play, players take turns placing their tiles end to end, with the restriction that touching ends must have the same
number of pips. In this particular variation, only one bone may be played at each end of an already-played bone.

There are 7 “suits” of bones in the game for each possible number of pips on a bone. All singles belong to two
suits, while all doubles belong to only one suit. For instance, the bone 3-5 belongs to suits 3 and 5, but the bone 2-2
belongs only to suit 2.

In ML, you will use pairs (typeint * int) to represent the bones, with each number in the pair representing the
number of pips on each side. Bones can be rotated in the game, so for most purposes,(3,5) is the same bone as
(5,3). However, in some problems the order will matter. The problem will explicitly state when this is the case. You
may assume you will always be passed valid bones when writing your functions, except when the problem requires
you to explicitly test this.

1. Write a functionlegal_bone that takes a boneb, returningtrue if both sides of the bone contain a valid number
of pips,false otherwise.

2. Write a functioncompatible_bones that takes two bones,b1 andb2, and returnstrue if both bones could be
legally placed end-to-end in some orientation, andfalse otherwise.

3. Write a functionall_legal_bones that takes a list of bonesblist, returningtrue if all bones in the list are
legal (or the list is empty) andfalse otherwise. Use a previous function in your solution.

4. Write a functionno_doubles that takes a list of bonesblist, returningtrue if all bones in the list are singles
(or the list is empty) andfalse otherwise.

5. Write a functionmake_suit that takes an integers and returns a list of all bones in that suit.Hint: use a helper
function.

6. Write a functionall_same_suit that takes a list of bonesblist, returningtrue if all bones in the list share at
least one common suit, andfalse otherwise (or if the list is empty).Hint: This is not as obvious as it sounds.
Use a helper function.

7. Write a functionlegal_order that takes a list of bonesblist, returningtrue if the list represents a line of
bones laid out in legal order, andfalse otherwise (or if the list is empty). For this function,the order of the
integers within a pair matters.The list[(1,3),(3,5)] represents a legal line of bones, but[(3,1),(3,5)]
does not.Hint: use a helper function.

8. Write a functionmake_line_between that takes two integers,a andb, and returns a list of bones where the
left side of the first bone isa, the right side of the last bone isb, and all numbers between betweena andb
(inclusive) are present on at least one side of one bone in the list. The result must represent a legal line of bones
as defined in problem 7. For example,make_line_between (1,4) could return[(1,2),(2,3),(3,4)], but
not [(1,3),(3,4)] or [(1,2),(3,4)].

1



9. (Extra Credit) Write a functionlegal_order_r that takes a list of bonesblist, returningtrue if the list
could represent a line of bones in legal order if bones can be rotated freely in place, andfalse otherwise (or if
the list is empty). For example,[(1,2)(3,2)(3,4)] would pass the test because the(3,2) could be rotated to
(2,3), creating a legal line of bones.

Type Summary

A correct solution will cause these bindings to be printed in the read-eval-print loop:

val legal_bone = fn : int * int -> bool
val compatible_bones = fn : (int * int) * (int * int) -> bool
val all_legal_bones = fn : (int * int) list -> bool
val no_doubles = fn : (int * int) list -> bool
val make_suit = fn : int -> (int * int) list
val all_same_suit = fn : (int * int) list -> bool
val legal_order = fn : (int * int) list -> bool
val make_line_between = fn : int * int -> (int * int) list

Getting these bindings does not necessarily mean your solution is correct. Be sure to test your code.

Assessment

Your submission should:

• Be correct.

• Exhibit good style, particularly indentation. Comments are not strictly necessary, but use them if you wish to
explain something.

• Not use any features not yet covered in class. You will need let bindings to define helper functions, but datatypes
and case matches are not necessary.

Turn-in Instructions

Use the turn-in form linked from the course website.

2


