
CSE341 Winter 2005 - Final Exam Review Questions
(Solutions)

March 15, 2005

Here are a bunch of exam-like questions that are not on the final. Some are probably harder than
the actual exam questions, but it’s difficult to judge.

1. Consider this Scheme code:

(define (add x y) (+ x y))
(define (double x) (* x 2))
(define-syntax quadruple

(syntax-rules ()
[(quadruple x)

(add (double x) (double x))]))

(a) give a use of the quadruple macro that returns a number not divisible by 4.

(quadruple (begin (set! x (+ x 1)) x)) ; x some number

(b) Assuming Scheme macros are NOT hygienic (even though they are), give a use of the
quadruple macro that returns an odd answer.

(let ([add (lambda (x y) 1)]) (quadruple 0))

2. A Scheme program with blanks is below. Assume that f is a ”pure” function (always returns
the same outputs given the same inputs). Fill in the blanks such that:

• x ends up holding true if there exists a numbern >= 0 such that (f n) evaluates to true

• the program goes into an infinite-loop otherwise.

(define (f x) ...) ; some pure body, not a blank to be filled

(define (g k n)
(if (f n)

(k #t)

1



(h k (+ n 2))))

(define (h k n)
(if (f n)

(g k n)
(g__________)))

(define x (let/cc k __________))

(g k (- n 1))))
(let/cc k(g k 0))

3. Write a Smalltalk class-method instance:of: for class Foo such that Foo instance: e1 of: e2
evaluates to true if and only if e1 is an instance of the class-object e2 evaluates to. (As in
Java, this includes being an instance of a subclass.) Recall every Smalltalk object accepts the
class message and every class-object accepts the superclass message.

Send e1 the class message; put the result in a local tmp. Then use a while-loop to compare
the result with e2. On each iteration, tmp := tmp superclass. Return false when tmp is Object
(and e2 isn’t).

4. Suppose you have to produce a Java program but you hate static typing. You devise a plan:

• Every time you’re supposed to write down a type (local variables, fields, method argu-
ments, etc.), you’ll write down the same type: Everything

• You’ll implement a translation from your program into one that typechecks but still
uses Everything for every type.

Give an overview of such a translation. Hints:

• Have every class implement an interface Everything.

• You’ll have to figure out what should be in Everything.

• You may have to give methods new names.

• You will have to add methods to classes.

How could multiple subclassing (i.e., multiple inheritance) make your translation (particu-
larly part 4) more convenient?

Make an interface or abstract class Everything that has every method in the whole program.
(Details: (1) remove duplicates. (2) systematically rename methods that have the same name
and argument types but different return types (i.e., one returns void and the other returns
Everything. An alternate solution makes every method return a value (e.g., null)). Change
every class to have every method by creating methods that throw MessageNotUnderstood.

2



Subclassing makes this a bit easier (in particular, inheriting from a class that that throws on
every message it’s sent works fine).

5. Which of the following programs runs faster. Explain.

• (letrec ([even (lambda (x) (if (zero? x) #t (not (odd (- x 1)))))]
[odd (lambda (x) (if (zero? x) #f (not (even (- x 1)))))])

(let ([odd (lambda (x) (= 1 (remainder x 2)))])
(even 10000000)))

• Methods for instances of A:
even: n

n = 0 ifTrue: [ˆ true]
ifFalse: [ˆ (self odd: n - 1) not]

odd: n
n = 0 ifTrue: [ˆ false]

ifFalse: [ˆ (self even: n - 1) not]

Methods for instances of B, which subclasses A:
odd: n

ˆ (n rem: 2) = 1

(B new) even: 10000000

Smalltalk is faster because of late-binding.

6. Recall Java has static overloading, but does not allow two methods with the same argument
types and different return types. Here’s a proposed relaxation of this restriction:

• You can define two methods in a class with the same name and argument types, but
different return types.

• But you can only call such methods when ”initializing a variable”, for example: T x =
m(e1,...,en);

• The method called depends on the declared type of the variable (T in the previous step).

Explain why this proposal does not always work out. That is, explain what is ambiguous
about it and why there’s not a very good way to resolve the ambiguity.

Consider the following java code:

class A {
Foo m();

3



Bar m();
}
...

A a = new A();
Object x = a.m();

How would you resolve which method m to call??

7. For each of the following questions, determine under what conditions it is sound for the first
type to be a subtype of the second:

(a) When isτ1 → τ2 a subtype ofτ3 → τ4?

Whenτ3 ≤ τ1 andτ2 ≤ τ4

(b) When isτa → τb → τc a subtype ofτ1 → τ2 → τ3?

Whenτ1 ≤ τa andτ2 ≤ τb andτc ≤ τ3

(c) When is(τa → τb) → (τc → τd) a subtype of(τ1 → τ2) → (τ3 → τ4)?
Whenτa ≤ τ1 andτ2 ≤ τb andτ3 ≤ τc andτd ≤ τ4

8. (Picking on Java) This program type-checks and runs:

class C {
public static void f(Object x, Object arr[]) {

arr[0] = x;
}
public static void main(String args[]) {

Object o = new Object();
C [] a = new C[10];
f(o, a);

}
}

(a) For this program, where does the type-checker use subsumption? From what type to
what type? What is Java’s subtyping rule for arrays?

In main, the second argument (a) in the call to f subsumes C[] to Object[]. Javas rule
for subtyping arrays is C[]<D[] if C <D.

(b) Does this program execute any downcasts when it runs? What happens when it runs?

The program does not execute any downcasts, implicit or explict. Running it causes an
uncaught ArrayStoreException to be thrown.

4



(c) Informally, what is the semantics of array-update in Java? (Start your answer with,
“Array update takes an array-objecta, an indexi, and an objecto. . . ”. Discuss what
exceptions might be thrown under what conditions and what occurs if no exceptions
are thrown.)
Array update takes an array-object a, an index i, and on object o. The array-object
a has a length and an element-type, both chosen when the object is constructed. For
example, the expression new C[10] constructs an array with length 10 and element-
type C. If i is greater than the length, an ArrayBoundsException is thrown. If o has a
different run-time type than as element type, an ArrayStoreException is thrown. Else,
the i th element of the array is mutated to refer to o.

(d) Is it possible to compile a Java program without run-time type information, even if the
program has no downcasts, method overriding, or reflection? (Note that compilation
must preserve the behavior you described in the previous question.)
No. Implementing array-update requires, at run-time, the type of the arrays elements
and the type of the object being assigned to an array element. (This would not be
necessary if array subtyping was invariant!)

9. Assume a class-based OO language where “subclassingis subtyping” and there is no static
overloading. Consider a classC, a classD that extendsC, and a clientP that uses classes
C andD. Now consider each of these potential source-code changes to classC:

(a) We add a methodf to C.
The class D will not type-check if D defined a method named f with a type that is not a
subtype of the type of f added to C. A client P will always continue to typecheck. Note
that it is only partially correct to say that D will fail to typecheck if it defined a method
f at a different type than that added to C. As long as Ds existing f method is at a subtype
of the new f in C everything will be cool.

(b) We take an existing methodf of C and changef from taking one argument of typeT1

to taking one argument of typeT2, whereT1 ≤ T2.
The class D will not type-check if it overrode f with a method taking an argument of
typeT1. A client P will always continue to typecheck.

(c) We take an existing methodf of C and changef from taking one argument of typeT1

to taking one argument of typeT2, whereT2 ≤ T1.
The class D or client P will not typecheck if they used method f of C for arguments that
are strict supertypes ofT2. Note that if class D overrides method f, the overriding can
still soundly typecheck though many languages do not allow subtyping on overriding.

(d) We take an existing methodf of C and make it abstract (removing its implementation,
but still requiring all objects of typeC to have it).
The class D or client P will not typecheck if C was previously a concrete class and they
used this information. Specifically, calling Cs constructor should not longer typecheck.

5



Furthermore, if D was concrete but no longer is (because D does not override f), then
calling Ds constructor should no longer typecheck. Finally, an explicit resend (super
call) in D to Cs f method must no longer typecheck.

For each of these changes:

• Describe the conditions under whichD will no longer typecheck. That is, describe all
D where the definition of classD should type-check before the change ofC but should
not type-check after the change.

• Describe the conditions under whichP will no longer typecheck. That is, describe
all P where the code forP should type-check before the change ofC but should not
type-check after the change.

10. Consider an OO language with public fields. (Whether the language has classes or not is
irrelevant.)

(a) Explain how we can translate programs in this language into a similar one where all
fields are private. (Hint: Add two methods per field to every object. Explain how to
change method bodies to use these fields.)

If class C declares a field x of type T, add methods:T get x(){x} andunit set x(T y){x :=
y}. Replace all field accesses e.x (or at least non-self field accesses) with e.getx().
Replace all field assignments e.x := e’ (or at least non-self field assignments) with
e.setx(e’).

(b) Explain how we can translate programs in the language with private fields into one with
no fields at all, but with method update. Method update, writteno.m := mbody ,
mutates an objecto such that its method namem is bound tombody. Here is a silly
example: This method changeso.m to multiply its argument byn and “optimizes” the
casen == 2:

unit f(C o, int n) {
if(n==2) then o.m := int m(int x) { x + x; }
else o.m := int m(int x) { x * n; }

}

Assume we have replaced all field accesses and field assignments (including self ac-
cesses and assignments) as described above. Then the only use of fields are in the
get and set methods (and constructors), which we change as follows: In the construc-
tor used to initialize field x to v, we instead have it update (i.e., initialize) getx to
T get x(){v}. We also have it define:

unit set_x(T y) {
self.get_x := T get_x() { y }

}

6



Note that we can still do any other processing (e.g. keeping access counts) in these
accessor functions that we could do before, although the set functions must be careful
that the new get functions they put in place will continue to perform the same steps as
those put in place by the constructor.

7


