
CSE 341:
Programming Languages

Spring 2005

Lecture 22 — define-struct

CSE 341 Spring 2005, Lecture 22 1



Data in Scheme

Recall ML’s approach to each-of, one-of, and self-referential types.

Pure Scheme’s approach:

• There is One Big Datatype with built-in predicates.

• Use pairs (lists) for each-of types.

• Primitives implicitly raise errors for “wrong variant”

• Use helper functions like caddr and your own.

We’ll discuss advantages/disadvantages next week.

CSE 341 Spring 2005, Lecture 22 2



define-struct
MzScheme extends Scheme with define-struct, e.g.:

(define-struct square (x y))

(define-struct piece (squares))

Semantics:

• Binds constructors (make-square, make-piece) that take

arguments and make values.

• Binds predicates (square?, piece?) that take one argument and

return #t only for values built from the right constructor.

• Binds accessors (square-x, square-y, piece-squares) that

take one argument, return the appropriate field, and call error for

values not built from the right constructor.

• Binds mutators (set-square-x!, set-square-y!,

set-piece-squares!).

CSE 341 Spring 2005, Lecture 22 3



define-struct is special

define-struct creates a new variant for the One Big Datatype.

Claim: define-struct is not a function.

Claim: define-struct is not a macro.

It could be a macro except for one key bit of its semantics: Values

built from the constructor cause every other predicate (including all

built-in ones) to return #f.

Advantage: abstraction

Disadvantage: Can’t write “generic” code that has a case for every

possible variant in every Scheme program.

CSE 341 Spring 2005, Lecture 22 4



Idiom for ML datatypes

Instead of a datatype with n constructors, you just use

define-struct n times.

That “these n go together” is just convention.

Instead of case, you have a cond with n predicates and one

“catch-all” error case.

CSE 341 Spring 2005, Lecture 22 5


