
CSE 341:
Programming Languages

Spring 2005

Lecture 20 — Macros

CSE 341 Spring 2005, Lecture 20 1



Today

• What are macros and what do they mean?

– Why do they have a bad reputation?

• Scheme’s macro system and hygiene

– Free variables in macros

– Bound variables in macros

– Why hygiene is usually what you want

• What macros are good and not good for

CSE 341 Spring 2005, Lecture 20 2



Macros
To oversimplify, a macro is just a rule for rewriting programs as a

prepass to evaluation. So it’s very syntactic.

The “level” at which macros are defined affects their usefulness.

• “Sublexical” e.g.: Replace car with hd turns cart into hdt.

– Macro-expander should recognize program tokens.

• “Pre-parsing” e.g., in C/C++ :

#define PI 3 + .14

#define add(x,y) x + y

r = add(5*a,b) * c;

circumference = 2 * PI * r;

• “Pre-binding” e.g.: Replace car with hd would turn (let* ([hd

0] [car 1]) hd) into (let* ([hd 0] [hd 1]) hd).

– Few macro systems let bindings shadow macros; Scheme does

CSE 341 Spring 2005, Lecture 20 3



The bad news

• Macros are very hard to use well.

• Most macro systems are so impoverished they make it harder.

• Actual uses of macros often used to ameliorate shortcomings in

the underlying language.

But:

• Macros have some good uses

• Scheme has a very sensible, integrated macro system

• So let’s “do macros justice” for the day.

CSE 341 Spring 2005, Lecture 20 4



Hygiene

A “hygienic” macro system:

• Gives fresh names to local variables in macros at each use of the

macro

• Binds free variables in macros where the macro is defined

Without hygiene, macro programmers:

• Get very creative with local-variable names

• Get creative with helper-function names too

• Try to avoid local variables, which conflicts with predictable effects

Hygiene is a big idea for macros, but sometimes is not what you want.

Note: Letting variables shadow macros is also useful, but a separate

issue.

CSE 341 Spring 2005, Lecture 20 5



Why macros

Non-reasons:

• Anything where an ordinary binding would work just as well.

• Including manual control of inlining.

Reasons:

• Cosmetics

• “Compiling” a domain-specific language

– But error messages a tough issue

• Changing evaluation-order rules

– Function application will not do here

• Introducing binding constructs

– A function here makes no sense

CSE 341 Spring 2005, Lecture 20 6


