CSE 341:
Programming Languages

Spring 2005
Lecture 17 — Local Binding, Delayed Evaluation, Memoization,
Thunks, Streams

CSE 341 Spring 2005, Lecture 17



Today

e Local Bindings
e Delaying evaluation: Function bodies evaluated only at application

e Key idioms of delaying evaluation
— Conditionals
— Streams
— Laziness

— Memoization

e |n general, evaluation rules defined by language semantics

— Some languages have “lazy” function application!

CSE 341 Spring 2005, Lecture 17



Local bindings

There are 3 forms of local bindings with different semantics:
o let
o letx*
e letrec

Also, in function bodies, a sequence of definitions is equivalent to
letrec.

But at top-level redefinition is assignment!

This makes it ghastly hard to encapsulate code, but in practice:
e people assume non-malicious clients
e implementations provide access to “real primitives”

For your homework, assume top-level definitions are immutable.

CSE 341 Spring 2005, Lecture 17



Delayed Evaluation

For each language construct, there are rules governing when
subexpressions get evaluated. In ML, Scheme, and Java:

e function arguments are “eager” (call-by-value)

e conditional branches are not

We could define a language in which function arguments were not
evaluated before call, but instead at each use of argument in body.

(call-by-name)
e Sometimes faster: (lambda (x) 3)

e Sometimes slower: (lambda (x) (4 x x))

e Equivalent if function argument has no effects/non-termination

CSE 341 Spring 2005, Lecture 17



Thunks

A “thunk” is just a function taking no arguments, which works great
for delaying evaluation.

e Instead of passing a value directly, pass a thunk (function) which
yields the value when it is called

If thunks are lightweight enough syntactically, why not make if eager?
(Smalltalk does this!)

CSE 341 Spring 2005, Lecture 17



Streams

e A stream is an “infinite” list — you can ask for the rest of it as

many times as you like and you'll never get null.

e The universe is finite, so a stream must really be an object that
acts like an infinite list.

e [he idea: use a function to describe what comes next.

Note: Deep connection to sequential feedback circuits

Note: Connection to UNIX pipes

CSE 341 Spring 2005, Lecture 17



Best of both worlds?

The “lazy” (call-by-need) rule: Evaluate the argument the first time
it's used. Save answer for subsequent uses.

e Asymptotically it's the best
e But behind-the-scenes bookkeeping can be costly

e And it's hard to reason about with effects

— Typically used in (sub)languages without effects

e Nonetheless, a key idiom with syntactic support in Scheme

— And related to memoization

CSE 341 Spring 2005, Lecture 17



Memoization

A “cache” of previous results is equivalent if results cannot change.
e Could be slower: cache too big or computation too cheap

e Could be faster: just a lookup

— On homework: An example where it's a lot faster by

preventing an exponential explosion.

An association list is not the fastest data structure for large memo
tables, but works fine for 341.

Question: Why does assoc return the pair?

CSE 341 Spring 2005, Lecture 17



