
CSE 341:
Programming Languages

Spring 2005

Lecture 17 — Local Binding, Delayed Evaluation, Memoization,

Thunks, Streams

CSE 341 Spring 2005, Lecture 17 1



Today

• Local Bindings

• Delaying evaluation: Function bodies evaluated only at application

• Key idioms of delaying evaluation

– Conditionals

– Streams

– Laziness

– Memoization

• In general, evaluation rules defined by language semantics

– Some languages have “lazy” function application!

CSE 341 Spring 2005, Lecture 17 2



Local bindings

There are 3 forms of local bindings with different semantics:

• let

• let*

• letrec

Also, in function bodies, a sequence of definitions is equivalent to

letrec.

But at top-level redefinition is assignment!

This makes it ghastly hard to encapsulate code, but in practice:

• people assume non-malicious clients

• implementations provide access to “real primitives”

For your homework, assume top-level definitions are immutable.

CSE 341 Spring 2005, Lecture 17 3



Delayed Evaluation

For each language construct, there are rules governing when

subexpressions get evaluated. In ML, Scheme, and Java:

• function arguments are “eager” (call-by-value)

• conditional branches are not

We could define a language in which function arguments were not

evaluated before call, but instead at each use of argument in body.

(call-by-name)

• Sometimes faster: (lambda (x) 3)

• Sometimes slower: (lambda (x) (+ x x))

• Equivalent if function argument has no effects/non-termination

CSE 341 Spring 2005, Lecture 17 4



Thunks

A “thunk” is just a function taking no arguments, which works great

for delaying evaluation.

• Instead of passing a value directly, pass a thunk (function) which

yields the value when it is called

If thunks are lightweight enough syntactically, why not make if eager?

(Smalltalk does this!)

CSE 341 Spring 2005, Lecture 17 5



Streams

• A stream is an “infinite” list — you can ask for the rest of it as

many times as you like and you’ll never get null.

• The universe is finite, so a stream must really be an object that

acts like an infinite list.

• The idea: use a function to describe what comes next.

Note: Deep connection to sequential feedback circuits

Note: Connection to UNIX pipes

CSE 341 Spring 2005, Lecture 17 6



Best of both worlds?

The “lazy” (call-by-need) rule: Evaluate the argument the first time

it’s used. Save answer for subsequent uses.

• Asymptotically it’s the best

• But behind-the-scenes bookkeeping can be costly

• And it’s hard to reason about with effects

– Typically used in (sub)languages without effects

• Nonetheless, a key idiom with syntactic support in Scheme

– And related to memoization

CSE 341 Spring 2005, Lecture 17 7



Memoization

A “cache” of previous results is equivalent if results cannot change.

• Could be slower: cache too big or computation too cheap

• Could be faster: just a lookup

– On homework: An example where it’s a lot faster by

preventing an exponential explosion.

An association list is not the fastest data structure for large memo

tables, but works fine for 341.

Question: Why does assoc return the pair?

CSE 341 Spring 2005, Lecture 17 8


