CSE 341:
Programming Languages

Spring 2005
Lecture 17 — Local Binding, Delayed Evaluation, Memoization,
Thunks, Streams
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Today

e Local Bindings
e Delaying evaluation: Function bodies evaluated only at application

e Key idioms of delaying evaluation
— Conditionals
— Streams
— Laziness

— Memoization

e |n general, evaluation rules defined by language semantics

— Some languages have “lazy” function application!
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Local bindings

There are 3 forms of local bindings with different semantics:
o let
o letx*
e letrec

Also, in function bodies, a sequence of definitions is equivalent to
letrec.

But at top-level redefinition is assignment!

This makes it ghastly hard to encapsulate code, but in practice:
e people assume non-malicious clients
e implementations provide access to “real primitives”

For your homework, assume top-level definitions are immutable.
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Delayed Evaluation

For each language construct, there are rules governing when
subexpressions get evaluated. In ML, Scheme, and Java:

e function arguments are “eager” (call-by-value)

e conditional branches are not

We could define a language in which function arguments were not
evaluated before call, but instead at each use of argument in body.

(call-by-name)
e Sometimes faster: (lambda (x) 3)

e Sometimes slower: (lambda (x) (4 x x))

e Equivalent if function argument has no effects/non-termination
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Thunks

A “thunk” is just a function taking no arguments, which works great
for delaying evaluation.

e Instead of passing a value directly, pass a thunk (function) which
yields the value when it is called

If thunks are lightweight enough syntactically, why not make if eager?
(Smalltalk does this!)
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Streams

e A stream is an “infinite” list — you can ask for the rest of it as

many times as you like and you'll never get null.

e The universe is finite, so a stream must really be an object that
acts like an infinite list.

e [he idea: use a function to describe what comes next.

Note: Deep connection to sequential feedback circuits

Note: Connection to UNIX pipes
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Best of both worlds?

The “lazy” (call-by-need) rule: Evaluate the argument the first time
it's used. Save answer for subsequent uses.

e Asymptotically it's the best
e But behind-the-scenes bookkeeping can be costly

e And it's hard to reason about with effects

— Typically used in (sub)languages without effects

e Nonetheless, a key idiom with syntactic support in Scheme

— And related to memoization
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Memoization

A “cache” of previous results is equivalent if results cannot change.
e Could be slower: cache too big or computation too cheap

e Could be faster: just a lookup

— On homework: An example where it's a lot faster by

preventing an exponential explosion.

An association list is not the fastest data structure for large memo
tables, but works fine for 341.

Question: Why does assoc return the pair?
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