
CSE 341:
Programming Languages

Spring 2005

Lecture 11 — “Objects” in ML; Mutual Recursion

CSE 341 Spring 2005, Lecture 11 1



Key idioms with closures

• Create similar functions

• Pass functions with private data to iterators (map, fold, ...)

• Combine functions

• Provide an ADT

• As a callback without the “wrong side” specifying the

environment.

• Partially apply functions (“currying”)

CSE 341 Spring 2005, Lecture 11 2



Provide an ADT

A record of functions is much like an object.

Free variables are prviate variables.

Our “set” example is fancy stuff, but you should be able to understand

it.

datatype set = S of {add:int -> set, member:int -> bool}

val empty_set = fn : unit -> set

CSE 341 Spring 2005, Lecture 11 3



Callbacks

A common idiom: Library takes a function to apply later, when an

event occurs. Examples:

• When a key is pressed, a mouse moved, etc.

• When a packet arrives from the network

The function may be a filter (“I want the packet”) or return a result

(“draw a line”), etc.

Library may accept multiple callbacks. Different callbacks may need

different private state with different types.

Fortunately, the type of a function does not depend on the type of free

variables.

Note: This is why Java added anonymous inner classes (for “event

listeners”).

CSE 341 Spring 2005, Lecture 11 4



Mutual Recursion

We haven’t yet seen how multiple functions can recursively call each

other? (Why can’t we do this with what we have?)

ML uses the keyword and to provide different scope rules. Example:

fun even i = if i=0 then true else odd (i-1)

and odd i = if i=0 then false else even (i-1)

Roughly extends the binding form for functions from fun f1 x1 = e1

to fun f1 x1 = e1 and f2 x2 = e2 and ... and fn xn = en.

Actually, you can have val bindings too, but bindings being defined

are in scope only inside function bodies. (Why?)

Syntax gotcha: Easy to forget that you write and fi xi = ei, not

and fun fi xi = ei.

CSE 341 Spring 2005, Lecture 11 5



Mutual Recursion Idioms
1. Encode a state machine (see product_sign example)

• Sometimes easier to understand than explicit state values.

2. Process mutually recursive types, example:

datatype webtext = Empty

| Link of webpage * string * webtext

| Word of string * webtext

and webpage = Found of string * webtext

| Unfound of string

A function “crawl for word” is inherently mutually recursive. (You

could make a datatype for “webtext or webpage”, but that’s ugly.)

Problem: the Web has cycles, which (sigh) is a common need for

mutation in ML.

Unproblem: When crawling, we don’t want cycles (use Unfound if

we have seen the page before).

CSE 341 Spring 2005, Lecture 11 6


