
CSE 341:
Programming Languages

Spring 2005

Lecture 6 — More on Tail Recursion & Accumulators

CSE 341 Spring 2005, Lecture 6 1



Implementing calls

Consider

fun len [] = 0

| len (x::xs) = 1 + len xs;

val theLength = len [1,2,3,4,5];

Q: How do you implement function call?

A: A “Call Stack”

Compare:

fun last [x] = x

| last(x::xs) = last xs;

val theLast = last [1,2,3,4,5];

CSE 341 Spring 2005, Lecture 6 2



Tail calls

If the result of f(x) is the result of the enclosing function body, then

f(x) is a tail call.

More precisely, a tail call is a call in tail position:

• In fun f(x) = e, e is in tail position.

• If if e1 then e2 else e3 is in tail position, then e2 and e3 are

in tail position (not e1). (Similar for case).

• If let b1 ... bn in e end is in tail position, then e is in tail

position (not any binding expressions).

• Function arguments are not in tail position.

• ...

CSE 341 Spring 2005, Lecture 6 3



So what?

Why does this matter?

• Implementation takes space proportional to depth of function calls

(“call stack” must “remember what to do next”)

• But in functional languages, implementation must ensure tail calls

eliminate the caller’s space

• Accumulators are a systematic way to make some functions tail

recursive

• “Self” tail-recursive is very loop-like because space does not grow.

CSE 341 Spring 2005, Lecture 6 4


