CSE 341: Programming Languages

Spring 2005
Lecture 2 — ML Functions, Pairs and Lists

What is a programming language?

Here are separable concepts for defining and evaluating a language:

- syntax: how do you write the various parts of the language?
- semantics: what do programs mean? (One way to answer: what are the evaluation rules?)
- idioms: how do you typically use the language to express computations?
- libraries: does the language provide “standard” facilities such as file-access, hashtables, etc.? How?
- tools: what is available for manipulating programs in the language?

Our focus

This course: focus on semantics and idioms to make you a better programmer

Reality: Good programmers know semantics, idioms, libraries, and tools

Libraries are crucial, but you can learn them on your own.

Goals for today

- Add some more absolutely essential ML constructs
- Discuss lots of “first-week” gotchas
- Enough to do first several homework problems
 - We will learn more and better constructs soon

Note: These slides make much more sense in conjunction with lec2.sml.

Recall a program is a sequence of bindings...
Function Definitions

... A second kind of binding is for functions

Syntax: \texttt{fun x} : t1, ..., xn : tn \texttt{= e}

Typing rules:

1. Context for e is (the function's context extended with)
 x1:t1, ..., xn:tn and:

2. \texttt{x} : (t1 * ... * tn) \rightarrow t where:

3. e has type t in this context

(This "definition" is circular because functions can call themselves and the
 type-checker "guessed" t.)

(It turns out in ML there is always a “best guess” and the type-checker can
 always "make that guess". For now, it’s magic.)

Evaluation: \textit{A FUNCTION IS A VALUE.}

Function Applications (a.k.a. Calls)

Syntax: \texttt{e} : e1, ..., en

Typing rules (all in the application's context):

1. \texttt{e} must have some type (t1 * ... * tn) \rightarrow t

2. \texttt{e} must have type ti (for i=1, ..., i=n)

3. \texttt{e0} (e1, ..., en) has type t

Evaluation rules:

1. \texttt{e} evaluates to a function f in the application's environment

2. \texttt{e} evaluates to value \texttt{vi} in the application's environment

3. result is f's body evaluated in an environment extended to bind
 x1 to vi (for i=1, ..., i=n).

(“an environment” is actually the environment where f was defined)

Some Gotchas

- The * between argument types (and pair-type components) has
 nothing to do with the * for multiplication

- In practice, you almost never have to write argument types
 - But you do for the way we will use pairs in homework 1
 - And it can improve error messages and your understanding
 - But \textit{type inference} is a very cool thing in ML
 - Types unneeded for other variables or function return-types

- Context and environment for a function body includes:
 - Previous bindings
 - Function arguments
 - The function itself
 - But not later bindings

Recursion

- A function can be defined in terms of itself.

- This “makes sense” if the calls to itself (recursive calls) solve
 “simpler” problems.

- This is more powerful than loops and often more convenient.

- Many, many examples to come in 341.
Pairs

Our first way to build *compound data* out of simpler data:

- Syntax to build a pair: \((e_1, e_2)\)
- If \(e_1\) has type \(t_1\) and \(e_2\) has type \(t_2\) (in current context), then \((e_1, e_2)\) has type \(t_1 \times t_2\).
 - (It might be better if it were \((t_1, t_2)\), but it isn’t.)
- If \(e_1\) evaluates to \(v_1\) and \(e_2\) evaluates to \(v_2\) (in current environment), then \((e_1, e_2)\) evaluates to \(\langle v_1, v_2 \rangle\).
 - (Pairs of values are values.)
- Syntax to get part of a pair: \(#1\ e\) or \(#2\ e\).
- Type rules for getting part of a pair: \(\) \(\)
- Evaluation rules for getting part of a pair: \(\) \(\)

Lists

We can have pairs of pairs of pairs... but we still “commit” to the amount of data when we write down a type.

Lists can have *any* number of elements:

- \(\square\) is the empty list (a value)
- More generally, \([v_1, v_2, \ldots, v_n]\) is a length \(n\) list
- If \(e_1\) evaluates to \(v\) and \(e_2\) evaluates to a list \([v_1, v_2, \ldots, v_n]\), then \(\epsilon_1 : : \epsilon_2\) evaluates to \([v, v_1, v_2, \ldots, v_n]\) (a value).
- \(\text{null } e\) evaluates to true if and only if \(e\) evaluates to \(\square\)
- If \(e\) evaluates to \([v_1, v_2, \ldots, v_n]\), then \(\text{hd } e\) evaluates to \(v_1\) and \(\text{tl } e\) evaluates to \([v_2, \ldots, v_n]\).
 - If \(e\) evaluates to \(\square\), both \(\text{hd } e\) and \(\text{tl } e\) raise *run-time exceptions*. (Different from type errors; more on this later.)

List types

A given list’s elements must all have the same type.

If the elements have type \(t\), then the list has type \(t\ \text{List}\). Examples: \(\text{int list}\), \(\text{(int+int) list}\), \(\text{(int list) list}\).

What are the type rules for \(\::\), \(\text{null}\), \(\text{hd}\), and \(\text{tl}\)?

- Possible exceptions do not affect the type.

Hmmm, that does not explain the type of \(\square\)?

- It can have any list type, which is indicated via ‘\(\:\) a list’.
- That is, we can build a list of any type from \(\square\).

Polymorphic types are 3 weeks ahead of us.
 - Teaser: \(\text{null}\), \(\text{hd}\), and \(\text{tl}\) are not keywords!

Recursion again

Functions over lists that depend on all list elements will be recursive:

- What should the answer be for the empty list?
- What should they do for a non-empty list? (In terms of answer for the tail of the list.)

Functions that produce lists of (potentially) any size will be recursive:

- When do we create a small (e.g., empty) list?
- How should we build a bigger list out of a smaller one?