What is a programming language?

Here are separable concepts for defining and evaluating a language:

- **syntax**: how do you write the various parts of the language?
- **semantics**: what do programs mean? (One way to answer: what are the evaluation rules?)
- **idioms**: how do you typically use the language to express computations?
- **libraries**: does the language provide “standard” facilities such as file-access, hashtables, etc.? How?
- **tools**: what is available for manipulating programs in the language?
Our focus

This course: focus on semantics and idioms to make you a better programmer

Reality: Good programmers know semantics, idioms, libraries, and tools

Libraries are crucial, but you can learn them on your own.
Goals for today

• Add some more absolutely essential ML constructs
• Discuss lots of “first-week” gotchas
• Enough to do first several homework problems
 – We will learn more and better constructs soon

Note: These slides make much more sense in conjunction with lec2.sml.

Recall a program is a sequence of bindings...
Function Definitions

... A second kind of binding is for functions

Syntax: \[\text{fun } x_0 (x_1 : t_1, \ldots, x_n : t_n) = e \]

Typing rules:

1. Context for \(e \) is (the function’s context extended with)
 \[x_1 : t_1, \ldots, x_n : t_n \text{ and} \]

2. \(x_0 : (t_1 * \ldots * t_n) \rightarrow t \) where:

3. \(e \) has type \(t \) in this context

(This “definition” is circular because functions can call themselves and the

type-checker “guessed” \(t \).

(It turns out in ML there is always a “best guess” and the type-checker can
always “make that guess”. For now, it’s magic.)

Evaluation: \(A \text{ FUNCTION IS A VALUE.} \)
Function Applications (a.k.a. Calls)

Syntax: \(e_0 \ (e_1, \ldots, e_n) \)

Typing rules (all in the application’s context):
1. \(e_0 \) must have some type \((t_1 \times \ldots \times t_n) \rightarrow t\)
2. \(e_i \) must have type \(t_i \) (for \(i=1, \ldots, i=n \))
3. \(e_0 \ (e_1, \ldots, e_n) \) has type \(t \)

Evaluation rules:
1. \(e_0 \) evaluates to a function \(f \) in the application’s environment
2. \(e_i \) evaluates to value \(v_i \) in the application’s environment
3. result is \(f \)'s body evaluated in an environment extended to bind \(x_i \) to \(v_i \) (for \(i=1, \ldots, i=n \)).

("an environment" is actually the environment where \(f \) was defined)
Some Gotchas

• The * between argument types (and pair-type components) has nothing to do with the * for multiplication

• In practice, you almost never have to write argument types
 – But you do for the way we will use pairs in homework 1
 Oops! Not true for Autumn 2005 homework 1!
 – And it can improve error messages and your understanding
 – But type inference is a very cool thing in ML
 – Types unneeded for other variables or function return-types

• Context and environment for a function body includes:
 – Previous bindings
 – Function arguments
 – The function itself
 – But not later bindings
Recursion

• A function can be defined in terms of itself.

• This “makes sense” if the calls to itself (recursive calls) solve “simpler” problems.

• This is more powerful than loops and often more convenient.

• Many, many examples to come in 341.
Pairs

Our first way to build *compound data* out of simpler data:

- Syntax to build a pair: \((e_1, e_2)\)
- If \(e_1\) has type \(t_1\) and \(e_2\) has type \(t_2\) (in current context), then \((e_1, e_2)\) has type \(t_1 \times t_2\).
 - (It might be better if it were \((t_1, t_2)\), but it isn't.)
- If \(e_1\) evaluates to \(v_1\) and \(e_2\) evaluates to \(v_2\) (in current environment), then \((e_1, e_2)\) evaluates to \((v_1, v_2)\).
 - (Pairs of values are values.)
- Syntax to get part of a pair: \(#1\ e\) or \(#2\ e\).
- Type rules for getting part of a pair: __________
- Evaluation rules for getting part of a pair: __________
Lists

We can have pairs of pairs of pairs... but we still “commit” to the amount of data when we write down a type.

Lists can have *any* number of elements:

- `[]` is the empty list (a value)
- More generally, `[v1, v2, ..., vn]` is a length *n* list
- If `e1` evaluates to `v` and `e2` evaluates to a list `[v1, v2, ..., vn]`, then `e1::e2` evaluates to `[v, v1, v2, ..., vn]` (a value).
- `null e` evaluates to true if and only if `e` evaluates to `[]`
- If `e` evaluates to `[v1, v2, ..., vn]`, then `hd e` evaluates to `v1` and `tl e` evaluates to `[v2, ..., vn]`.
 - If `e` evaluates to `[]`, both `hd e` and `tl e` raise *run-time exceptions*. (Different from type errors; more on this later.)
List types

A given list's elements must all have the same type.

If the elements have type \(t \), then the list has type \(t \ list \). Examples: \(\text{int list} \), \((\text{int*int}) \ list \), \((\text{int list}) \ list \).

What are the type rules for \(:: \), \texttt{null}, \texttt{hd}, and \texttt{tl}?

- Possible exceptions do not affect the type.

Hmmm, that does not explain the type of \([] \)?

- It can have any list type, which is indicated via \('a \ list \).

- That is, we can build a list of any type from \([] \).

- \textit{Polymorphic} types are 3 weeks ahead of us.

 - Teaser: \texttt{null}, \texttt{hd}, and \texttt{tl} are not keywords!
Recursion again

Functions over lists that depend on all list elements will be recursive:

• What should the answer be for the empty list?

• What should they do for a non-empty list? (In terms of answer for the tail of the list.)

Functions that produce lists of (potentially) any size will be recursive:

• When do we create a small (e.g., empty) list?

• How should we build a bigger list out of a smaller one?