Our focus

This course: focus on semantics and idioms to make you a better programmer

Reality: Good programmers know semantics, idioms, libraries, and tools

Libraries are crucial, but you can learn them on your own.

Goals for today

- Add some more absolutely essential ML constructs
- Discuss lots of “first-week” gotchas
- Enough to do first several homework problems
 - We will learn more and better constructs soon

Note: These slides make much more sense in conjunction with lec2.sml.

Recall a program is a sequence of bindings...
Function Definitions

... A second kind of binding is for functions

Syntax: \texttt{fun } x_0 \ (x_1 : t_1, \ldots, \ x_n : t_n) = e

Typing rules:
1. Context for \(e \) is (the function’s context extended with)
 \(x_i : t_i, \ldots, x_n : t_n \) and:
2. \(x_0 : (t_1 \ast \ldots \ast t_n) \rightarrow t \) where:
3. \(e \) has type \(t \) in this context

(This “definition” is circular because functions can call themselves and the
type-checker “guessed” \(t \).)

(It turns out in ML there is always a “best guess” and the type-checker can
always “make that guess”. For now, it’s magic.)

Evaluation: \textit{A FUNCTION IS A VALUE.}

Function Applications (a.k.a. Calls)

Syntax: \(e_0 \ (e_1, \ldots, e_n) \)

Typing rules (all in the application’s context):
1. \(e_0 \) must have some type \((t_1 \ast \ldots \ast t_n) \rightarrow t \)
2. \(e_i \) must have type \(t_i \) (for \(i=1, \ldots, i=n \))
3. \(e_0 \ (e_1, \ldots, e_n) \) has type \(t \)

Evaluation rules:
1. \(e_0 \) evaluates to a function \(f \) in the application’s environment
2. \(e_i \) evaluates to value \(v_i \) in the application’s environment
3. result is \(f \)'s body evaluated in an environment extended to bind
\(x_i \) to \(v_i \) (for \(i=1, \ldots, i=n \)).

(“an environment” is actually the environment where \(f \) was defined)

Some Gotchas

- The \(\ast \) between argument types (and pair-type components) has
 nothing to do with the \(\ast \) for multiplication
- In practice, you almost never have to write argument types
 - But you do for the way we will use pairs in homework 1
 \textit{Oops! Not true for Autumn 2005 homework 1!}
 - And it can improve error messages and your understanding
 - But type inference is a very cool thing in ML
 - Types unneeded for other variables or function return-types
- Context and environment for a function body includes:
 - Previous bindings
 - Function arguments
 - The function itself
 - But not later bindings

Recursion

- A function can be defined in terms of itself.
- This “makes sense” if the calls to itself (recursive calls) solve
 “simpler” problems.
- This is more powerful than loops and often more convenient.
- Many, many examples to come in 341.
Pairs

Our first way to build *compound data* out of simpler data:

- Syntax to build a pair: \((e_1, e_2)\)
- If \(e_1\) has type \(t_1\) and \(e_2\) has type \(t_2\) (in current context), then \((e_1, e_2)\) has type \(t_1 \times t_2\).
 - (It might be better if it were \((t_1, t_2)\), but it isn't.)
- If \(e_1\) evaluates to \(v_1\) and \(e_2\) evaluates to \(v_2\) (in current environment), then \((e_1, e_2)\) evaluates to \((v_1, v_2)\).
 - (Pairs of values are values.)
- Syntax to get part of a pair: \(#1\ e\) or \(#2\ e\).
- Type rules for getting part of a pair: ____________
- Evaluation rules for getting part of a pair: ____________

Lists

We can have pairs of pairs of pairs... but we still “commit” to the amount of data when we write down a type.

Lists can have any number of elements:

- \(
\) is the empty list (a value)
- More generally, \([v_1, v_2, \ldots, v_n]\) is a length \(n\) list
- If \(e_1\) evaluates to \(v\) and \(e_2\) evaluates to a list \([v_1, v_2, \ldots, v_n]\), then \(\text{cons}\ e_1\ e_2\) evaluates to \([v, v_1, v_2, \ldots, v_n]\) (a value).
- \(\text{null}\ e\) evaluates to true if and only if \(e\) evaluates to \(
\)
- If \(e\) evaluates to \([v_1, v_2, \ldots, v_n]\), then \(\text{hd}\ e\) evaluates to \(v_1\) and \(\text{tl}\ e\) evaluates to \([v_2, \ldots, v_n]\).
 - If \(e\) evaluates to \(\)\), both \(\text{hd}\ e\) and \(\text{tl}\ e\) raise run-time exceptions. (Different from type errors; more on this later.)

List types

A given list’s elements must all have the same type.
If the elements have type \(t\), then the list has type \(t\ \text{List}\). Examples: \(\text{int\ list}, \ (\text{int} \times \text{int})\ \text{list}, \ (\text{int\ list})\ \text{list}\).
What are the type rules for \(:\), \(\text{null}\), \(\text{hd}\), and \(\text{tl}\)?
- Possible exceptions do not affect the type.
Hmmm, that does not explain the type of \(\) ?
- It can have any list type, which is indicated via ‘a list.
- That is, we can build a list of any type from \(\).
- Polymorphic types are 3 weeks ahead of us.
 - Teaser: \(\text{null}, \text{hd}, \text{and tl}\) are not keywords!

Recursion again

Functions over lists that depend on all list elements will be recursive:

- What should the answer be for the empty list?
- What should they do for a non-empty list? (In terms of answer for the tail of the list.)
Functions that produce lists of (potentially) any size will be recursive:

- When do we create a small (e.g., empty) list?
- How should we build a bigger list out of a smaller one?