Static typing in
object-oriented
languages

Keunwoo Lee

CSE 341 -- Programming Languages
University of Washington

Dept. of Computer Science and Engineering

Static types: review

* Need to statically eliminate "unsafe” operations
® (undecidable in general case; use conservative
approximation)
* "Unsafe": relative to definition of language

* In OO languages: generally "unsafe” = sending
message to object that has no method for it
®* "message not understood” exception
® static type system guarantees no "message not
understood” exceptions

Typing OO programs

® Assign type to every expression

1 For every message send: make sure type of receiver
contains method for message send (name and
argument types)

2 For every method body, ensure it returns correct type
(assuming types of args & receiver)

3 Every class must implement types it declares
4 Every class must be compatible extension of its
superclass

Terminology

® class: unit ofimplementation
® instructs compiler how to generate code
®* mostly concerns dynamic semantics

®* type: unit of interface
® instructs type checker and programmer how an
expression may be used
®* mostly concerns static semantics

Object type syntax

* object types are like record types: a map from
names to types
®* Could use ML type syntax:

{ fieldNamel:typel,

fieldNameN:typeN,
methodNamel:argTypel -> returnTypel,

methodNameM:argTypeM -> returnTypeM }

Object type syntax (2)

°* Instead, we'll use more familiar Java-like syntax:

signature S {
typel fieldNamel;

typeN fieldNameN;
returnTypel methodNamel(argType, ..., argType);

returnTypeM methodNameM (argType, ..., argType);
}

Object type example

signature Point {
Integer Xx;
Integer y;
Point move(lnteger dx, Integer dy);

®* |gnore access protection for now --- all public

* Recall types describe only interface --- no bodies

* Will sometimes omit signature name (Point)

* Can permute members at will (order does not matter)

Fields = methods

* Read-only field is equivalent to method:
signature { Foo x; }
is equivalent to
signature { Foo x(); }

* Read-write field is equivalent to two methods:
signature { mutable Foo x; }
is equivalent to
signature { Foo x(); void setFoo(Foo x); }

* Will mostly ignore fields in discussion that follows
®* Rules for fields can be derived straightforwardly from
rules for methods.

Subtyping

* Subtyping is essence of OO types
*T1 subtypes T2 if instances of T1 can be

substituted for instances of T2
®ij.e.,, T1 understands all messages of T2, and
always returns type-compatible results

® "Substitutability principle”
* Notation: "T1 subtypes T2" written T1 <: T2

Reflexive, transitive

* All types subtype themselves:
T<:T (reflexivity)

®* Subtyping is transitive:
Tl <: T3 and T3 <: T2
implies
Tl <: T2

Width subtyping

*If T1 has exactly the same members as T2, plus

some extra ones, then T1 <: T2

signature Point {

Integer x();

Integer y();

Point move(lnteger dx, Integer dy);
}
signature ColoredPoint {

Integer x();

Integer y();

Color color();

Point move(lnteger dx, Integer dy);

}

® Can derive ColoredPoint <: Point

Depth subtyping

°*If T1 is exactly like T2, except that one of T1's
methods subtypes one of T2's methods,

then T1 <: T2.

signature Rectangle {
Point topLeft();
Point bottomRight();

}

signature ColoredRectangle {
ColoredPoint topLeft();
ColoredPoint bottomRight();

}

® ColoredRectangle substitutable for Rectangle --- result of
topLeft() always substitutable

Method subtyping

* But hold on --- depth subtyping asks whether
methods subtype each other

®* Must define method subtyping relation...

®* (trickier than it seems)

Fruits, plants, flies

signature Fruit { String name(); }
signature Apple { String name(); Stem stem(); }
signature Banana {

String name(); void slipOnPeel(); }

signature FruitPlant { Fruit produce(); }
signature ApplePlant { Apple produce(); }

signature FruitFly { void eat(Fruit f); }
signature AppleFly { void eat(Apple a); }

Fruit subtyping

signature Fruit { String name(); }
signature Apple { String name(); Stem stem (); }
signature Banana {

String name(); void slipOnPeel(); }

®* Seems clear that
Apple <: Fruit

Banana <: Fruit

* Indeed, width subtyping gives us this result

Return subtyping

signature FruitPlant { Fruit produce(); }
signature ApplePlant { Apple produce(); }

Seems OK to conclude that
ApplePlant <: FruitPlant
Result of produce() always substitutable:
ApplePlant ap = ...;
FruitPlant fp = ap;
Fruit f = fp.produce();
String s = f.name();
®* Return types are covariant (go with subtyping
relationship of method as a whole)

Argument subtyping

signature FruitFly { void eat(Fruit f); }
signature AppleFly { void eat(Apple a); }

Can we conclude that
AppleFly <: FruitFly ?
Consider following code:

AppleFly af = ...; /] 1
FruitFly ff = af; /] 2
Fruit aFruit = ...; // 3
ff.eat(aFruit); /] 4

W hat if the AppleFly implementor calls stem ()
on its argument?

"Natural” subtyping

®* Covariant argument subtyping is broken!
®* Must use opposite rule --- called contravariant rule -
--- for arguments.

* Summary:
®For M1 to subtype M2, M1 must return a type at
least as specific as M2.
® For M1 to subtype M2, M1 must accept
argument types that are at least as general
as M2's.

Other rules...

® Java uses invariant argument and return:
®* M1 subtypes M2 only if M1 and M2 have same argument

and return types.

®* C++ uses invariant argument and covariant return:
®* M1 subtypes M2 only if M1 and M2 have same argument
types, and M1's return type is at least as specificas M2's

* Eiffel uses covariant argument and return types
® M1 subtypes M2 only if M1's argument and return types
are at least as specificas M2's.
® Broken! (Fix using dynamic checks: raise runtime error)

Implementations

class C1
subclasses C2
implements S1, S2, ... SN
{
returnTypel methodNamel(argType, ... argType)
{ bodyl }

returnTypeN methodNameM(argType, ... argType)
{ bodyM }

Completeness

Completeness of implementation rule:
® A class C must have a method --- either defined in
C, or inherited from C's superclass(es) --- to handle
every message in its types.

class MauvaisePomme
subclasses Object
implements Apple {
String name() { return "BadApple"; }

MauvaisePomme mp = ...; //1
Apple a = mp; /] 2
Stem s = a.stem(); /] 3

Abstract classes

®* Most languages allow abstract methods

® Classes that do not implement all methods in their
types, or that do not override abstract methods with
non-abstract ones, are abstract classes

®* Concrete instantiation restriction:
® Only non-abstract classes can be instantiated.

* Note this relaxes completeness of implementation rule -
-- incomplete classes exist, but may not be
instantiated

Compatible extension

class BonFruit subclasses Objectimplements Fruit {
String name() { return "some kind of fruit"; } }

signature Bogus { Integer name(); }
class Papaya subclasses BonFruitimplements Bogus {
Integer name() { return 456; } }

* Problem: most languages require that subclasses also

be supertypes
®* In such languages, methods must override only with a

method that subtypes overridden method

Miscellaneous issues

®* Access protection

® Structural vs. nominal subtyping
®* Principal typing of classes

®* Overloading vs. overriding

* Subtyping of mutable objects

Access protection

®*To add access protection (public, private,

protected):
® Add visibility modifiers to fields and methods
®* Change typechecking of sends, classes, inheritance

®* Won't discuss details in this class

* Recall thatin ML we use module system to
accomplish much the same thing --- arguably a more
orthogonal design (does not conflate data type with
module)

By-name subtyping

®* OQur presentation has used structural subtyping

®* Most real-world languages use by-name (nominal)
subtyping:
®T1 subtypes T2 if T1's structure subtypes T2,

and
T1 declares that it subtypes T2

® e.g., following do not have subtype relation in Java:
interface 11 { void foo(); }
interface 12 { void foo(); void bar(); }

® Must add:
interface 12 extends 11 { void foo(); void bar(); }

Principal class types

°In Java, type checker implicitly declares a type for
every class:

class Point {
Integer x() { ... }

Integer y() { ... }
}

Point p = new Point(...);

®* Each class has principal type
("best type for that class")

Overloading

class Point extends Object {
Integer x() { ... }
Integer y() { ... }
Point move(lnteger dx, Integer dy) { ... }
Point move(Float dx, Float dy) { ... }

Point move(integer, Integer) and

Point move(Float, Float)

do not not have an overriding relationship --- they are
different functions with the same name

Overloading ct'd

®* Overloading resolves statically, based on static type

of arguments, with surprising results:

class Shape extends Object {
boolean overlaps(Shape other) { ... }

}

class Rectangle extends Shape {
boolean overlaps(Shape other) {...}
boolean overlaps(Rectangle other) { ... }

}

Rectangle r = new Rectangle(...);

Shape s = new Rectangle(...);

boolean b = r.overlaps(s);

Subtyping and mutation

signature FruitRef {
Fruit fruit();
void setFruit(Fruit f);

signature AppleRef {
Apple fruit();
void setFruit(Apple a);

Any subtype relation?

Subtyping & mutation (2)

Same with mutable fields...
signature FruitRef {

mutable Fruit fruit;

signature AppleRef {
mutable Apple fruit;

Subtyping & mutation (3)

class Bananalmplementor
extends Object
implements Banana {
String name() { ... }
void slipOnPeel() { ... }

}

AppleRef ar = new AppleReflmplementor(); /] 1
FruitRef fr = ar; /] 2
fr.fruit = Bananalmplementor(); // 3
Apple anApple = ar.fruit; /] 4

Stem s = anApple.stem(); /] 5

