
Exploratory
programm ing using
Squeak and Morphic
K eunwoo Lee

C S E 341 -- Prog r a m m ing Languages

U n iversi ty of Washington

D e pt. o f C o m puter S cience and Engineering

Exp lo ratory programm i ng

Program m i ng by "try ing s tu ff out" and seeing what

happens

Slow, cum bersome in ed it/com pile/run loop

Eas ier in read/eval/pr int loop (fast feedback)

Squeak & Morphic have even m ore advanced support

fo r edit ing code, manipula ting objects in teractive ly ...

Inspector/explorer

Selector browser

Stack trace debugger (for exceptions)

Ti le-based script ing

Review: FishMorph Creating morphs

The debug halo menu The inspector

(Can also open an
inspector on any object

by sending inspect
m essage.)

Inspect ing instance variables

C an view, edit values in -p lace (w r ite express ion in value

display pane and accept (Alt-s))

Yel low - click to br ing

up contex t menu for

instance var

Inspec tor mini-workspace

Bot tom pane behaves as object-specif ic workspace

W orkspace 's environ m e n t is like no-argu m e n t method:

instance var iables access ib le

self bound to object

super beg ins lookup in superc lass of self 's class

Inspector: uses
Try out code in object workspace; copy into a

m ethod when you've got what you want .

U se con text menu to explore instance vars

"This value shou ldn't be here! How d id th is get set?"

--> use methods s tor ing into this ins t var

" W hat is this f ie ld 's c lass? What me thods does its

class handle?"

--> use browse c lass or browse hierarchy

E xplorer
D isplays object graph as tree (fie lds as child ren)

Bot tom pane is also w o rkspace (for selected item)

Selector browser (method finder)

Of ten want to know who handles a message

e.g ., when you see a m e s sage send and want to

know who the receiver m ight be

W ith selector browser, can search for all

imp lementors of a method

(am ong other things; read docs in bottom pane)

Sma lltalk exceptions
ra is ing: Exception methods signa l, signa l:

Exception subclass: #NotFound ...

hand ling: BlockCon text method on:do :

[aTree f ind: [:x | x > 0]

ifA bsent: [No tFound new signal: 'no posit ives!']]

on: N o tFound

do: [:exn |

T ranscr ipt show: 'got NotFound exception'; cr.].

Note: Except ion def ines class m ethods signal and signal: ; can usually
just send signal messages to Except ion subclasses directly:

NotFound signal: 'no positives!'

S tack trace debugger
Unhandled except ions propagate to "top level",

where the inspector is invoked.

(not ice Workspace context is
UndefinedObject>>DoIt)

Inspect ing the stack

receiver and instance var iables

execut ion stack pr ior to signa l

(se lected stack fram e in red)

loca l variables in curren t context

Can edit code of methods directly in debugger

Use "accept" (Alt-s) to save changes

Can restart message send, step through evaluation

Interactive stack debugg ing T ile-based scripting
Tiles: graphical

representations o f

Squeak objects and code

U se Viewer halo to

obta in tile scr ipt ing

in terface for a morph

Script categories Making scripts
Drag from script tile to start a script:

D ropping onto desktop makes standalone script :

D rag from emp ty script to start with no code:

Editing scripts
To change name, cl ick on title

To add l ines, drop more tiles onto script

Editing scripts, ct'd.
C lick on morph name to get

m enu:

C an get tiles from here, or

m any other places (e.g., Tile

halo of other Morph)

Assemb led scripts

(bu tton m a de with bu tton to fire th is

script select ion of scr ipt menu)

Running scripts
To execute, cl ick exclamation point but ton

C an set to run on d i fferent events --- click but ton

next to clock to edit :

ticking runs repeatedly at
c lock t icks

mouse* events run on events

click what do these mean?
fo r more info

Textual script editing
Can always "drop down" in to text-based code for

M orphic scripts:

U seful fo r more soph isticated cod ing

A lso, can copy & paste script into method once

script is debugged & mature

Conclusion
e m a c s , Ec lipse, and Visua l Studio are not the last

w ord in program m i ng environm ents

D em and m ore!

You can build your ow n "inspector"- like programs for

exp lor ing objects in other languages/env iron m e n ts

e.g.:

X M L-R P C is recently deve loped protocol fo r

objects co m m unicat ing over netw o rk

E asy to build an X M L-R P C inspector so you can

interac tively send m essages, rece ive replies

