
ADTs
structure Stack :> sig

type 'a stack

val create: 'a stack

val isEmp ty: 'a stack -> bool

val push: 'a -> 'a stack -> 'a stack

...

end = struc t ... end

ADT : hidden representation

Only access through (implemen tor-provided)

operat ions

"Exposed" ADTs
(def ine emp t y-stack '())

(def ine (empty? a-stack) (equa l? a-stack '()))

(def ine (push v a-stack) (cons v a-stack))

...

C lient can access representation.

On ly "pol iteness" prevents this.

St ill useful to organize th ink ing, make intentions

m anifest

ADT design process
Ident ify abstract ions

Ident ify ope rations on abstractions

K ey addi tion of OO: inheritance...

OOP design process
Ident ify abstract ions

Ident ify ope rations on abstractions

Factor into subc lass/superclass re lationships

Common operations across many c lasses

-> make into superc lasses, inheri t

Factor ing is ongoing, iterative process

Good OO programme rs constant ly refactor

Fram eworks: l ibraries tha t "pre-factor"

funct iona lity needed by many clients in a given

appl ication doma in

When to inherit?
Inheritance to express k ind-of re lationships

An IconButton is a kind o f a Button.

Common interface

Inhe ritance to reuse code/ implemen tation

Stack m ight inher it from Array

Less desirab le than organ iz ing for interfaces

Fo r long run reuse, factor for interfaces, not

implem entation.

Otherwise , may la ter find that interface is not

exactly suitable.

Concrete vs . abstract
Concrete c lass:

In tended to be instantiated, used directly

Abstract class:

In tended to provide common interface or

imp lemen ta tion for subc lasses

D o not instantia te directly

In statically typed languages, typica lly declare

abstrac tness explicit ly

In Smalltalk, def ine methods that send

self subclassResponsibi l i ty

Leaf vs. interior
Rule of t humb: only "leaf" classes should be

concrete

i.e., do not inhe rit from concrete classes

Often la ter discover that concrete c lass is not

exactly what one wants ; but you can't alte r it,

because the instances depend on behavior

Instead, create abs tract c lass and inher it from that

E.g., do not inher it FancyIconButton direc tly from

IconBu t ton ; instead, define AbstractIconBut ton

and inher it both I conBut ton and Fancy IconBut ton

from that.

Factor ing exercise: collect ions

Array at:, at:pu t :, first, last

S tring at:, at:pu t :, from: to : , first, last

Set pu t :

Bag put :, count:

Dict iona ry at:put :

Interval from : to:

L inkedList head, ta il, at:, a t:put : , first, last

Doub lyL inkedList

head, ta il, at:, a t:put : , first, last

a ll col lect ions:

do : , contains:, any: ifAbsent :, filter:

Wha t is a f ramework?
A: A library tha t

Provides funct ionality for wr iting applica tions in a

particu lar doma in

Is des igned to be extended by the c lient (in the

OO wo rld , usually by subc lassing some

framework c lass)

Framework examples
Graphical user interface (GU I)

D oma in-specific func tionality: draw ing, widgets

(buttons , input fie lds, etc .), input event loop

Hook for client extens ion: user m ight subclass

Button and override mouseD own method, draw

m ethod, e tc.

Framework examples
W eb appl icat ion servers

D oma in-specific func tionality : ne twork

connections , reques t pars ing, database quer ies

Hooks for cl ient extension:

defines abstrac t RequestHandler c lass, with

hand leRequest me thod (default sends em pty

rep ly) that is overr idden by cl ient.

Framework examples
Unit testing

D oma in-specific func tionality: fo r send ing

m essages to an object, capturing re turn values,

compa ring to expected re turn value, and

record ing/presenting results

Hook for user extension : TestCase class wi th

runTest method (default does noth ing; user

subc lasses, and overr ides to run tests) .

