Why side effects?

® Purely functional programs are
computationally complete.

*Why bother with side effects?

® Reminder: "side effect" = anything that's not
evaluation

®e.g.: changing the value in an updatable
(mutable) data location, printing to screen



To model world?

®*"World changes --- to model it, need side
effects™
*Wrong --- can always model changing world

using function of type
World -> World
®*Takes "old world"”, returns "new world"

®Like list reverse, which returns fresh list
instead of updating old list



So why then?

1. Efficiency

2. Expressiveness

3. Permissiveness

4. Interaction with outside world

5. Abstraction/ease of evolution



1. Efficiency

® Purely functional programs make many copies
of data

®e.g., list functions return new lists

®* Naive compilers will produce code that spends
time and space constructing all these copies

®*Solutions...
® compilers

®type systems



Smart compilers

®*Can eliminate some (not all) copies by analysis
*However:
®*Require considerable investment to write
®*May have slow compilation time
®*May require whole-program knowledge
® Still doesn't get all the copies

®*Ongoing research problem



Smarttype systems

®*"Linear type systems"” can restrict uses of data
®can make some data types "uniquely pointed to"
®if argument to reverse is unique pointer to that
list, the cells can be reused instead of being
copied (no other client can access the previous
list value; it is garbage)
*However:
®Can be difficult for programmers to learn
®Can be too restrictive for many practical
programming idioms
®*Ongoing research problem



(On the other hand)

®*Use of immutable data can encourage sharing
®Different users of a data structure don't need to
worry about one mutating itin an unacceptable
way
®*Sometimes this sharing leads to efficiency
gains
®*However, these benefits can be realized in an
impure language simply by using immutable
data structures



2. ExXpressiveness

®*Some data structures inherently hard to
express in pure languages, e.g.:

®Cyclic data structures

®doubly linked lists

®trees where nodes have parent pointers
®Incrementally initialized data structures

®arrays where element values depend on
previously computed element values



Doubly linked lists

datatype 'a DList =
DEmpty
| DNode of {elem:'a,

prev:'a DList,
next:'a DList};
val empty dlist = DEmpty

val single _dlist =
DNode {elem=25,
prev=DEmpty,
next=DEmpty};



Doubly linked lists

datatype 'a DList =

DEmpty
| DNode of {elem:'a,
prev:'a DList,
next:'a DList};

fun prepend x Empty =
DNode {elem=25, prev=DEmpty, next=DEmpty}
| prepend x (DNode {elem, prev, next}) =
DNode {elem=x, prev=DEmpty,
next=(DNode {elem=elem,
prev=(XXX?),
next=(YYv?)1})1};



Incrementally
initialized arrays

®*Hard to write array constructor expression if
later elements' values are computed from

previous ones
[2, £(this[O]), ... 17

® Purely functional solutions tend to be baroque
®*Can make constructors into primitives (like

Array.fromList)...
® (But then you're just admitting defeat.)



3. Permissiveness

fun copy (w:world) = (w, W) ;

®*But there should only be one world

®*No such problem if world is implicit (just
current state of memory)

® Again, linear type systems can help, with
caveats mentioned previously



4. Interaction

®1/O inherently "side-effecting”
®*E.g., network card buffer:
®* When data arrives, that specific spotin memory
changes
®* When you need to send data, you'd better put
the new data in that specific spotin memory
®*Can push down into runtime system; again,

this is admitting defeat

®* (Haskellis pure; it uses monads for I/O, which are nice but suffer
from analogous problem to "threading-the-world problem" (next
slide))



5. Evolution/abstraction

*When modeling side effects by explicit "world"
argument/return, all potentially side-effecting
functions must take and return world

®e.g., If f takes an int and updates the world, it

must be of type
int * World -> World

®So f's callers must also take/return the world
®*Result: world gets "threaded"” through call
chain, with some annoying results



Evolution example

®*Suppose finitially is pure...

fun £ x = x + x;

®...but evolves to require a side effect:

fun £ x =
let val _ = Log.append "debug: x = 1"
A (Int.toString x)
in x + xXx end;

val f : fn int -> 1int

®Iln impure language, this is simple



Evolution example

®In pure language, we must pass/return a
"world" to model side effects

®*So, we must add a "world"” to x's arg and
return value

fun £ (x, l:Log) =
let val newlLog = Log.append
in (x + x, newLog) ;
val f = fn : (int * Log) -> (int * Log)

*We must now update all of f's callers, and their
callers, etc. recursively up the call chain!



Abstraction

®* Evolution problem is really special case of more

general problem:

®In purely functional code, impossible to
abstract away side effects

® Caller forced to know about fn's side effects

® Often good (side effects are important, & should
be documented), but not always

®e.g., if function has "pure” interface but internally
may cache previously computed values for
efficiency



Conclusion

* My belief: With language and compiler
technology available in 2004, side effects are a
necessary evil in a practical language.

®(Caveat: Haskell community disagrees, & they
have successfully written large programs.)



