
CSE341 - Section Problems

May 26, 2004

The following questions are meant to give you practice in understanding some of the OO-related
concepts that we’ve been discussing in the last 2 weeks. They should also serve well as additional
review for the final exam.

1. (Subtyping) For each of the following questions, determine under what conditions it is sound
for the first type to be a subtype of the second:

(a) When isτ1 → τ2 a subtype ofτ3 → τ4?

(b) When isτa → τb → τc a subtype ofτ1 → τ2 → τ3?

(c) When is(τa → τb) → (τc → τd) a subtype of(τ1 → τ2) → (τ3 → τ4)?

2. (Picking on Java) This program type-checks and runs:

class C {
public static void f(Object x, Object arr[]) {

arr[0] = x;
}
public static void main(String args[]) {

Object o = new Object();
C [] a = new C[10];
f(o, a);

}
}

(a) For this program, where does the type-checker use subsumption? From what type to
what type? What is Java’s subtyping rule for arrays?

(b) Does this program execute any downcasts when it runs? What happens when it runs?

(c) Informally, what is the semantics of array-update in Java? (Start your answer with,
“Array update takes an array-objecta, an indexi, and an objecto. . . ”. Discuss what
exceptions might be thrown under what conditions and what occurs if no exceptions
are thrown.)

1



(d) Is it possible to compile a Java program without run-time type information, even if the
program has no downcasts, method overriding, or reflection? (Note that compilation
must preserve the behavior you described in the previous question.)

3. (Fragile Superclasses) Assume a class-based OO language where “subclassingis subtyping”
and there is no static overloading. Consider a classC, a classD that extendsC, and a client
P that uses classesC andD. Now consider each of these potential source-code changes to
classC:

(a) We add a methodf to C.

(b) We take an existing methodf of C and changef from taking one argument of typeT1

to taking one argument of typeT2, whereT1 ≤ T2.

(c) We take an existing methodf of C and changef from taking one argument of typeT1

to taking one argument of typeT2, whereT2 ≤ T1.

(d) We take an existing methodf of C and make it abstract (removing its implementation,
but still requiring all objects of typeC to have it).

For each of these changes:

• Describe the conditions under whichD will no longer typecheck. That is, describe all
D where the definition of classD should type-check before the change ofC but should
not type-check after the change.

• Describe the conditions under whichP will no longer typecheck. That is, describe
all P where the code forP should type-check before the change ofC but should not
type-check after the change.

4. (Encoding Fields) Consider an OO language with public fields. (Whether the language has
classes or not is irrelevant.)

(a) Explain how we can translate programs in this language into a similar one where all
fields are private. (Hint: Add two methods per field to every object. Explain how to
change method bodies to use these fields.)

(b) Explain how we can translate programs in the language with private fields into one with
no fields at all, but with method update. Method update, writteno.m := mbody ,
mutates an objecto such that its method namem is bound tombody. Here is a silly
example: This method changeso.m to multiply its argument byn and “optimizes” the
casen == 2:

unit f(C o, int n) {
if(n==2) then o.m := int m(int x) { x + x; }
else o.m := int m(int x) { x * n; }

}

2


