
'

&

$

%

CSE 341:
Programming Languages

Dan Grossman

Spring 2004

Lecture 9— Callbacks, Currying, and Mutual Recursion

Dan Grossman CSE341 Spring 2004, Lecture 9 1



'

&

$

%

Key idioms with closures

• Create similar functions

• Pass functions with private data to iterators (map, fold, ...)

• Combine functions

• Provide an ADT (see section)

• As a callback without the “wrong side” specifying the

environment.

• Partially apply functions (“currying”)

Dan Grossman CSE341 Spring 2004, Lecture 9 2



'

&

$

%

Callbacks

A common idiom: Library takes a function to apply later, when an

event occurs. Examples:

• When a key is pressed, a mouse moved, etc.

• When a packet arrives from the network

The function may be a filter (“I want the packet”) or return a result

(“draw a line”), etc.

Library may accept multiple callbacks. Different callbacks may need

different private state with different types.

Fortunately, the type of a function does not depend on the type of free

variables.

Dan Grossman CSE341 Spring 2004, Lecture 9 3



'

&

$

%

Callback example (with mutable state!)

Library interface:

datatype action = ...

fun register_callback : ((int -> bool),action) -> unit

Library implementation (mutation, but hidden from clients)

val cbs : (int -> bool) list ref = ref []

fun register_callback f = cbs := f::(!cbs)

fun on_event i =

let fun inner l =

case l of

[] => []

| (f,a)::tl =>

if (f i) then a::(inner tl) else inner tl

in inner (!cbs) end

Dan Grossman CSE341 Spring 2004, Lecture 9 4



'

&

$

%

Example continued

Clients (kind of pseudocode):

register_callback ((fn i => true), Log ...)

register_callback ((fn i => i = 80), Http_get ...)

val lst = countup(1,10)

fun in_lst j =

case lst of [] => false | hd::tl => hd=j orelse in_lst tl

register_callback (in_lst, Other ...)

Key point: clients functions can use client-defined data, without library

knowing anything about that data

Dan Grossman CSE341 Spring 2004, Lecture 9 5



'

&

$

%

Partial application (“currying”)

Recall every function in ML takes exactly one argument.

Previously, we simulated multiple arguments by using one n-tuple

argument.

Another way: take one argument and return a function that takes

another argument and ...

This is called “currying” because of someone named Curry.

Example:

val inorder3 = fn x => fn y => fn z =>

z >= y andalso y >= x

((inorder3 4) 5) 6

inorder3 4 5 6

val is_pos = inorder3 0 0

Dan Grossman CSE341 Spring 2004, Lecture 9 6



'

&

$

%

More currying idioms

Currying is particularly convenient when creating similar functions with

iterators:

fun fold_old (f,acc,l) =

case l of

[] => acc

| hd::tl => fold_old (f, f(acc,hd), tl)

fun fold_new f = fn acc => fn l =>

case l of

[] => acc

| hd::tl => fold_new f (f(acc,hd)) tl

fun sum1 l = fold_old ((fn (x,y) => x+y), 0, l)

val sum2 = fold_new (fn (x,y) => x+y) 0

There’s even convenient syntax: fun fold_new f acc l = ...

Dan Grossman CSE341 Spring 2004, Lecture 9 7



'

&

$

%

Currying vs. Pairs

Currying is elegant, but a bit backward: the function writer chooses

which partial application is most convenient.

Of course, it’s easy to write wrapper functions:

fun other_curry1 f = fn x => fn y => f y x

fun other_curry2 f x y = f y x

fun curry f x y = f (x,y)

fun uncurry f (x,y) = f x y

Digression: There’s something really, really intriguing about the types

of curry and uncurry if you pronounce -> as implies and * as and.

Dan Grossman CSE341 Spring 2004, Lecture 9 8



'

&

$

%

Function-Call Efficiency

First: Function calls take constant (O(1)) time, so until you’re using

the right algorithms and have a critical bottleneck, forget about it.

That said, ML’s “all functions take one argument” can be inefficient in

general:

• Create a new n-tuple

• Create a new function closure (2 homeworks from now)

In practice, implementations optimize common cases. In some

implementations, n-tuples are faster (avoid building the tuple). In

others, currying is faster (avoid building intermediate closures).

In the < 1 percent of code where detailed efficiency matters, you

program against an implementation. Bad programmers worry about

this stuff at the wrong stage and for the wrong code.

Dan Grossman CSE341 Spring 2004, Lecture 9 9



'

&

$

%

Mutual Recursion

We haven’t yet seen how multiple functions can recursively call each

other? (Why can’t we do this with what we have?)

ML uses the keyword and to provide different scope rules. Example:

fun even i = if i=0 then true else odd (i-1)

and odd i = if i=0 then false else even (i-1)

Roughly extends the binding form for functions from fun f1 x1 = e1

to fun f1 x1 = e1 and f2 x2 = e2 and ... and fn xn = en.

Actually, you can have val bindings too, but bindings being defined

are in scope only inside function bodies. (Why?)

Syntax gotcha: I always forget you write and fi xi = ei, not and

fun fi xi = ei.

Dan Grossman CSE341 Spring 2004, Lecture 9 10



'

&

$

%

Mutual Recursion Idioms
1. Encode a state machine (see product_sign example)

• Sometimes easier to understand than explicit state values.

2. Process mutually recursive types, example:

datatype webtext = Empty

| Link of webpage * string * webtext

| Word of string * webtext

and webpage = Found of string * webtext

| Unfound of string

A function “crawl for word” is inherently mutually recursive. (You

could make a datatype for “webtext or webpage”, but that’s ugly.)

Problem: the Web has cycles, which (sigh) is a common need for

mutation in ML.

Unproblem: When crawling, we don’t want cycles (use Unfound if

we have seen the page before).

Dan Grossman CSE341 Spring 2004, Lecture 9 11


