CSE 341:
Programming Languages

Dan Grossman
Spring 2004
Lecture 9— Callbacks, Currying, and Mutual Recursion

-

Dan Grossman CSE341 Spring 2004, Lecture 9

/Key iIdioms with closures

e Create similar functions
e Pass functions with private data to iterators (map, fold, ...)
e Combine functions

e Provide an ADT (see section)

e As a callback without the “wrong side” specifying the

environment.

e Partially apply functions (“currying”)

-

Dan Grossman CSE341 Spring 2004, Lecture 9

/Callbacks \

A common idiom: Library takes a function to apply later, when an

event occurs. Examples:
e When a key is pressed, a mouse moved, etc.
e When a packet arrives from the network

The function may be a filter (“l want the packet”) or return a result
(“draw a line"), etc.

Library may accept multiple callbacks. Different callbacks may need
different private state with different types.

Fortunately, the type of a function does not depend on the type of free
variables.

- /

Dan Grossman CSE341 Spring 2004, Lecture 9 3

/Callback example (with mutable state!) \

Library interface:

datatype action
fun register_callback : ((int -> bool),action) -> unit

Library implementation (mutation, but hidden from clients)

val cbs : (int -> bool) list ref = ref []
fun register_callback f = cbs := f::(!cbs)
fun on_event i =
let fun inner 1 =
case 1 of
[] => []
| (f,a)::t1 =>
if (f i) then a::(inner tl) else inner tl

\\\\ in inner (!'cbs) end 4///

Dan Grossman CSE341 Spring 2004, Lecture 9 4

/Example continued \

Clients (kind of pseudocode):

register_callback ((fn i => true), Log ...)
register_callback ((fn i => i = 80), Http_get ...)
val 1lst = countup(1,10)
fun in_1st j =

case 1lst of [] => false | hd::tl => hd=j orelse in_lst tl
register_callback (in_lst, Other ...)

Key point: clients functions can use client-defined data, without library

knowing anything about that data

- /

Dan Grossman CSE341 Spring 2004, Lecture 9 5

/Partial application (“currying”)

Recall every function in ML takes exactly one argument.

Previously, we simulated multiple arguments by using one n-tuple

argument.

Another way: take one argument and return a function that takes

another argument and ...

This is called “currying” because of someone named Curry.
Example:

val inorder3 = fn x => fn y => fn z =>
z >= y andalso y >= x

((inorder3 4) 5) 6

inorder3 4 5 6

val is_pos = inorder3 0 O

.

Dan Grossman CSE341 Spring 2004, Lecture 9 6

/I\/Iore currying idioms \

Currying is particularly convenient when creating similar functions with

Iiterators:

fun fold_old (f,acc,l) =
case 1 of
[] => acc
| hd::tl => fold_old (f, f(acc,hd), tl)
fun fold_new f = fn acc => fn 1 =>
case 1 of
[] => acc
| hd::tl => fold_new f (f(acc,hd)) tl
fun suml 1 = fold_old ((fn (x,y) => x+y), 0, 1)
val sum2 = fold_new (fn (x,y) => x+y) O

There's even convenient syntax: fun fold_new f acc 1 = ... /

.

Dan Grossman CSE341 Spring 2004, Lecture 9 7

/Currying vs. Pairs \

Currying is elegant, but a bit backward: the function writer chooses

which partial application is most convenient.

Of course, it's easy to write wrapper functions:

fun other_curryl f = fn x => fn y => f y x
fun other_curry2 f x y = f y x
fun curry £f xy = £ (x,y)

fun uncurry f (x,y) = f xy

Digression: There's something really, really intriguing about the types
of curry and uncurry if you pronounce -> as implies and * as and.

- /

Dan Grossman CSE341 Spring 2004, Lecture 9 8

/Function—CaII Efficiency \

First: Function calls take constant (O(1)) time, so until you're using
the right algorithms and have a critical bottleneck, forget about it.

That said, ML's “all functions take one argument” can be inefficient in

general:
e Create a new n-tuple
e Create a new function closure (2 homeworks from now)

In practice, implementations optimize common cases. In some
implementations, n-tuples are faster (avoid building the tuple). In
others, currying is faster (avoid building intermediate closures).

In the < 1 percent of code where detailed efficiency matters, you
program against an implementation. Bad programmers worry about

\ihis stuff at the wrong stage and for the wrong code. /

Dan Grossman CSE341 Spring 2004, Lecture 9 9

/I\/Iutual Recursion \

We haven't yet seen how multiple functions can recursively call each
other? (Why can't we do this with what we have?)

ML uses the keyword and to provide different scope rules. Example:

fun even i = if i=0 then true else odd (i-1)

and odd i = if i=0 then false else even (i-1)

Roughly extends the binding form for functions from fun f1 x1 = el

to fun f1 x1 = el and f2 x2 = e2 and ... and fn xn = en.

Actually, you can have val bindings too, but bindings being defined
are in scope only inside function bodies. (Why?)

Syntax gotcha: | always forget you write and fi xi = ei, not and

fun fi xi = ei.

- /

Dan Grossman CSE341 Spring 2004, Lecture 9 10

/I\/Iutual Recursion ldioms \

1. Encode a state machine (see product_sign example)

e Sometimes easier to understand than explicit state values.

2. Process mutually recursive types, example:

datatype webtext = Empty
| Link of webpage * string * webtext
| Word of string * webtext

and webpage = Found of string * webtext

| Unfound of string

A function “crawl for word” is inherently mutually recursive. (You
could make a datatype for “webtext or webpage”, but that’s ugly.)

Problem: the Web has cycles, which (sigh) is a common need for
mutation in ML.

Unproblem: When crawling, we don't want cycles (use Unfound if

\\ we have seen the page before). /

Dan Grossman CSE341 Spring 2004, Lecture 9 11

