CSE 341:
Programming Languages

Dan Grossman
Spring 2004
Lecture 7— Motivation and First-Class Functions
Today

- Finish course motivation
- Summarize what we’ve learned with a concise and well-known notation for recursively-defined language constructs
- Begin first-class functions
Why these 3?

Functional programming (ML, Scheme) encourages recursion, discourages mutation, provides elegant, lightweight support for first-class code. Support for extensibility complements OO.

- ML has a polymorphic type system (vindication imminent!) complementary to OO-style subtyping, a rich module system for abstract types, and rich pattern-matching.

- Scheme has dynamic typing, “good” macros, fascinating control operators, and a minimalist design.

- Smalltalk has classes but not types, an unconventional environment, and a complete commitment to OO.

Runners-up: Haskell (laziness and purity), Prolog (unification and backtracking), thousands of others...
Why not some popular ones?

- Java: you know it, will contrast at end of course (e.g., interfaces, anonymous inner classes, container types)
- C: lots of “implementation-dependent” behavior (a bad property), and we have CSE303
- C++: an enormous language, and unsafe like C
- Perl: advantages (strings, files, ...) not foci of this course. Python or Ruby would be closer.
Summary and Some Notation

Learned the syntax, typing rules, and semantics for (a big) part of ML.

Can summarize abstract syntax with (E)BNF. Informally:

\[
\begin{align*}
 t &::= \text{int} | \text{bool} | \text{unit} | \text{dtname} \\
 &\quad | t_1 \rightarrow t_2 | t_1 \times t_2 | \{x_1=t_1, \ldots, x_n=t_n\} \\
 e &::= 34 | x | (e_1, e_2) | \text{if } e_1 \text{ then } e_2 \text{ else } e_3 \\
 &\quad | \text{let } b_1 \ldots b_n \text{ in } e \text{ end} | e_1 e_2 \\
 &\quad | \text{case } e \text{ of } p_1 => e_1 | \ldots | p_n => e_n \\
 &\quad | e_1 + e_2 | \{x_1=e_1, \ldots, x_n=e_n\} | C e
\end{align*}
\]

\[
\begin{align*}
 b &::= \text{val } p = e | \text{fun } f \ p = e \\
 &\quad | \text{datatype } \text{dtname} = C_1 \text{ of } t_1 | \ldots | C_n \text{ of } t_n
\end{align*}
\]

\[
\begin{align*}
 p &::= 34 | x | _ | C p | (p_1, p_2) | \{x_1=p_1, \ldots, x_n=p_n\}
\end{align*}
\]

Things left out of this grammar: \(n\)-tuples, field-accessors, floating-point, boolean constants, and also/orelse, lists, ...
First-Class Functions

- Functions are values. (Variables in the environment are bound to them.)
- We can pass functions to other functions.
 - *Factor* common parts and *abstract* different parts.
- Most polymorphic functions take functions as arguments.
 - Non-example: `fun f x = 42`
- Some functions taking functions are polymorphic.
Type Inference and Polymorphism

ML can infer function types based on function bodies. Possibilities:

- The argument/result must be one specific type.
- The argument/result can be *any* type, but may have to be the *same type* as other parts of argument/result.
- Some hand-waving about “equality types”

We will study this *parametric polymorphism* more next week.

Without it, ML would be a pain (e.g., a different list library for every list-element type).

Fascinating: If $f: \text{int} \to \text{int}$, there are lots of values f could return. If $f: \text{’a} \to \text{’a}$, whenever f returns, it returns its argument!
Anonymous Functions

As usual, we can write functions anywhere we write expressions.

- We already could:
 \[(\text{let fun f x = e in f end})\]

- Here is a more concise way (better style when possible):
 \[(\text{fn x => e})\]

- Cannot do this for recursive functions (why?)
Returning Functions

Syntax note: \(\rightarrow \) “associates to the right”

- \(t1 \rightarrow t2 \rightarrow t3 \) means \(t1 \rightarrow (t2 \rightarrow t3) \)

Again, there is nothing new here.

The key question: What about \textit{free variables} in a function value? What \textit{environment} do we use to \textit{evaluate} them?

Are such free variables useful?

You must understand the answers to move beyond being a novice programmer.