
'

&

$

%

CSE 341:
Programming Languages

Dan Grossman

Spring 2004

Lecture 5— Type synonyms, accumulators, fancy pattern-matching

Dan Grossman CSE341 Spring 2004, Lecture 5 1



'

&

$

%

Goals

• Contrast type synonyms with new types

• Investigate why accumulator-style recursion can be more efficient

• See pattern-matching for built-in “one of” types (not really a

concept, but important for homework)

• See the elegance of “deep patterns” and a generalization of what

bindings are

– What we have been doing is just a special case

Dan Grossman CSE341 Spring 2004, Lecture 5 2



'

&

$

%

Type synonyms

You can bind a type name to a type. Example:

type intpair = int * int

(We call something else a type variable.)

In ML, this creates a synonym, also known as a transparent type

definition. Recursion not allowed.

So a type name is equivalent to its definition.

We’ll have much more to say about equivalence and abstract types

later.

To contrast, the type a datatype binding introduces is not equivalent

to any other type (until possibly a later type binding).

Dan Grossman CSE341 Spring 2004, Lecture 5 3



'

&

$

%

Recursion

You should now have the hang of recursion:

• It’s no harder than using a loop (whatever that is)

• It’s much easier when you have multiple recursive calls (e.g., with

functions over ropes or trees)

But there are idioms you should learn for elegance, efficiency, and

understandability.

Today: using an accumulator.

Dan Grossman CSE341 Spring 2004, Lecture 5 4



'

&

$

%

Accumulator lessons

• Accumulators can avoid data-structure copying

• Accumulators can reduce the depth of recursive calls that are not

tail calls

• Key patterns:

– Non-accumulator: compute recursive results and combine

– Accumulator: use recursive result as new accumulator

– The base case becomes the initial accumulator

You will use recursion in non-functional languages—this lesson still

applies.

Note: We spent considerable time investigating how to_list_1 and

to_list_2 work using the overhead projector.

Dan Grossman CSE341 Spring 2004, Lecture 5 5



'

&

$

%

Back to patterns

We saw that the case expression was how to test variants and extract

values from datatype values. Advantages:

• exhaustiveness and redundancy checked for us

• more concise syntax for binding local variables to extracted values

In fact, case expressions are the preferred way to test variants and

extract values from all ML’s “one-of” types, including predefined ones.

So: Do not use functions hd, tl, null, isSome, valOf

Teaser: These functions are useful for passing as values

Note:

• You could define all these functions yourself

• [] and :: are just funny-looking constructors; NONE and SOME

aren’t even funny-looking

Dan Grossman CSE341 Spring 2004, Lecture 5 6



'

&

$

%

Tuple patterns

You can also use patterns to extract fields from tuples and records.

This is better style than #1 and #foo, and it means you do not (ever)

need to write function arguments.

Instead of a case with one pattern, you can put a pattern directly in a

val binding.

Next time we’ll see patterns and bindings are much more general.

Dan Grossman CSE341 Spring 2004, Lecture 5 7


