
'

&

$

%

CSE 341:
Programming Languages

Dan Grossman

Spring 2004

Lecture 3— ML lists, local bindings, and the lack of mutation

Dan Grossman CSE341 Spring 2004, Lecture 3 1



'

&

$

%

Lists
We can have pairs of pairs of pairs... but we still “commit” to the

amount of data when we write down a type.

Lists can have any number of elements:

• [] is the empty list

• More generally, [v1,v2,...,vn] is a length n list

• If e1 evaluates to v and e2 evaluates to a list [v1,v2,...,vn],

then e1::e2 evaluates to [v,v1,v2,...,vn].

• null e evaluates to true if and only if e evaluates to []

• If e evaluates to [v1,v2,...,vn], then hd e evaluates to v1 and

tl e evaluates to [v2,...,vn].

– If e evaluates to [], a run-time exception is raised (this is

different than a type error; more on this later)

Dan Grossman CSE341 Spring 2004, Lecture 3 2



'

&

$

%

List types

A given list’s elements must all have the same type.

If the elements have type t, then the list has type t list. Examples:

int list, int*int list, int list list.

What are the type rules for ::, null, hd, and tl?

• Possible exceptions do not affect the type.

Hmmm, that does not explain the type of [] ?

• It can have any type, which is indicated via ’a list.

• That is, we can build a list of any type from [].

• Polymorphic types are 3 weeks ahead of us.

– Teaser: null, hd, and tl are not keywords!

Dan Grossman CSE341 Spring 2004, Lecture 3 3



'

&

$

%

Recursion again

Functions over lists that depend on all list elements will be recursive:

• What should the answer be for the empty list?

• What should they do for a non-empty list? (In terms of answer for

the tail of the list.)

Functions that produce lists of (potentially) any size will be recursive:

• When do we create a small (e.g., empty) list?

• How should we build a bigger list out of a smaller one?

Dan Grossman CSE341 Spring 2004, Lecture 3 4



'

&

$

%

Local variables
Functions without local variables can be poor style and/or really

inefficient.

Exercise: hand-evaluate bad_max and good_max for lists [1,2]

[1,2,3], and [3,2,1].

Syntax: let b1 b2 ... bn in e end where each bi is a binding.

Meaning: Each bi is evaluated and added to the environment for

subsequent bindings and e.

The whole expression evaluates to whatever e evaluates to (and the

bindings are not part of any environment outside of the expression).

Elegant design worth repeating:

• Let-expressions can appear anywhere an expression can.

• Let-expressions can have any kind of binding.

– Local functions can refer to any bindings in scope.

Dan Grossman CSE341 Spring 2004, Lecture 3 5



'

&

$

%

Summary and general pattern

Major progress: functions (including recursion), pairs, lists, and

let-expressions

Each has a syntax, typing rules, evaluation rules.

Functions, pairs, and lists are very different, but we can describe them

in the same way:

• How do you create values? (function bindings, pair expressions,

empty-list and ::)

• How do you use values? (function application, #1 and #2, null,

hd, and tl)

This (and conditionals) is enough for your homework though:

• andalso and orelse help a bit (see section)

• Soon: much better ways to use pairs and lists (pattern-matching)

Dan Grossman CSE341 Spring 2004, Lecture 3 6



'

&

$

%

You want to change something?

There is no way to mutate (assign to) a binding, pair component, or

list element.

How could the lack of a feature make programming easier?

In this case:

• Amount of sharing is indistinguishable

– Aliasing irrelevant to correctness!

• Bindings are invariant across function application

– Mutation breaks compositional reasoning, a (the?) intellectual

tool of engineering

Dan Grossman CSE341 Spring 2004, Lecture 3 7


