
'

&

$

%

CSE 341:
Programming Languages

Dan Grossman

Spring 2004

Lecture 26— Extensibility in OO and FP

Dan Grossman CSE341 Spring 2004, Lecture 26 1



'

&

$

%

You have grading to do

I am going to distribute course evaluation forms so you may rate the quality

of this course. Your participation is voluntary, and you may omit specific

items if you wish. To ensure confidentiality, do not write your name on the

forms. There is a possibility your handwriting on the yellow written

comment sheet will be recognizable; however, I will not see the results of this

evaluation until after the quarter is over and you have received your grades.

Please be sure to use a No. 2 PENCIL ONLY on the scannable form.

I have chosen (name) to distribute and collect the forms. When you are

finished, he/she will collect the forms, put them into an envelope and mail

them to the Office of Educational Assessment. If there are no questions, I

will leave the room and not return until all the questionnaires have been

finished and collected. Thank you for your participation.

I’ll come back at 12:45.

Dan Grossman CSE341 Spring 2004, Lecture 26 2



'

&

$

%

After Today

• Monday: No class

• Wednesday: Garbage Collection demystified

• Thursday: I invade section (Thank you Dave!) for a review

session: come with questions or sit there bored

• Friday: Conclusions and Language-Design Principles

– Not on final, but it would be a shame to miss the tie-up

– Stop by 1:30-5:00 with questions about final

• Finals Week:

– Dave grades hw7

– Evan runs the tournament (Thank you Evan!)

– I am out of town; should reply to emails within 24 hours

– Dave/Evan give final Thu, JUNE 10, 830-1020, EE1 037

Dan Grossman CSE341 Spring 2004, Lecture 26 3



'

&

$

%

Each-of types and operations

• Given a type with several variants/subtypes and several

functions/methods, there’s an obvious 2D-grid of code you need:

Int Negate Add Mult

eval

toString

hasZero

• OO and FP lay out the code differently.

• Which is more convenient depends on what you’re doing and how

the variants/operations “fit together”

• Often, tools let you view “the other dimension”

• Opinion: Dimensional structure of code is greater than we have on

a computer, so we’ll always have limits in text-based languages.

Dan Grossman CSE341 Spring 2004, Lecture 26 4



'

&

$

%

Extensibility

When life gets interesting is when you need to extend code, but you

cannot change the existing types/operations/classes.

• ML makes it easy to write new operations; Java does not.

• Java makes it easy to write new variants; ML does not.

• In ML the original code must plan for extensibility:

– For operations, use polymorphism and function arguments. For

example, use folds or even abstract the constructors.

– For types, can use polymorphism, but the lack of subtyping

makes it awkward to use the extended types.

• In Java the extended code must suffer from downcasts

– For types, use interfaces and have new classes implement them.

– For operations, the lack of parametric polymorphism means we

must downcast to know the operations exist.

Dan Grossman CSE341 Spring 2004, Lecture 26 5



'

&

$

%

Unextensibility

Extensibility is not all it’s cracked up to be:

• Makes original code more difficult to change later.

• Makes code harder to reason about locally (e.g., dynamic dispatch

or functions-as-arguments mean you never know what code might

execute next)

ML and Java have different defaults, but both let you decide what to

make extensible:

• ML: Generally not extensible by default. Without a type

constructor or a function-argument, you limit what might happen

• Java: Generally extensible by default. But you can declare

methods or classes final; arguably under-used.

HW6 investigated “unintended extensions” – I think they’re usually a

bad idea.

Dan Grossman CSE341 Spring 2004, Lecture 26 6


