
'

&

$

%

CSE 341:
Programming Languages

Dan Grossman

Spring 2004

Lecture 25— Static Overloading; Subtype vs. Parametric

Polymorphism; Bounded Quantification

Dan Grossman CSE341 Spring 2004, Lecture 25 1

'

&

$

%

Static Overloading

Many OO languages allow methods in the same class to have the same

“name” but different argument types. E.g.:

void show(Window w) ...

void show(DancingBear db) ...

float distTo(Point p) ...

float distTo(3DPoint p) ...

This complicates slightly the semantics of message send. As before,

we:

• Use the class (“run-time type”) of the receiver to pick a method.

• Call the method with the receiver bound to self.

But now there are multiple methods with the same name, so we:

• Use the (compile-time) types of the arguments to pick the “best

match”.

Dan Grossman CSE341 Spring 2004, Lecture 25 2

'

&

$

%

A lower-level view
Here’s an equivalent way to think about it:

• A method’s name includes the types of its “formal” arguments

(e.g., show$Window)

• A message send is rewritten with the types of its “actual”

arguments after typechecking (e.g., show(e) becaomes

show$Window(e) if e has type Window.

This seems like an “ugly” view, but:

• It’s exactly how static overloading is implemented.

• It suggests static overloading is not very “interesting”, just

convenient.

But... It interacts poorly with contravariant subtyping on method

argument-types, which (I believe) is why Java and C++ use invariant

subtyping there.

Dan Grossman CSE341 Spring 2004, Lecture 25 3

'

&

$

%

Static Overloading vs. Multimethods

A very simple difference: Multimethods choose the method at

run-time using the class of the actuals.

Example: e.distTo((Point)(new 3DPoint(3.0,4.0,2.0)))

The same “no best match” errors arise, but with overloading they arise

at compile-time (and can be resolved with explicit subsumption).

Dan Grossman CSE341 Spring 2004, Lecture 25 4

'

&

$

%

Static Typing and Code Reuse

Key idea: Scheme and Smalltalk are different but not that different:

• Scheme has arbitrarily nested lexical scope (so does Smalltalk, but

only within a method)

• Smalltalk has subclassing and dynamic dispatch (but easy to code

up what you need in Scheme)

Java and ML are a bit more different:

• ML has datatypes; Java has classes

• The ML default is immutable

• Java does not have first-class functions (but does have anonymous

inner classes)

But the key difference is the type system: Java has subtyping; ML has

parametric polymorphism (e.g., (’a * (’a -> ’b)) -> ’b).

Dan Grossman CSE341 Spring 2004, Lecture 25 5

'

&

$

%

What are “forall” types good for?

Some good uses for forall types:

• Combining functions:

(* ((’a->’b)*(’b->’c)) -> (’a->’c) *)

let compose (f,g) x = g (f x)

• Operating on generic container types:

isempty : (’a list) -> bool

map : ((’a list) * (’a -> ’b)) -> ’b list

• Passing private data (unnecessary with closures):

(* (’a * ((’a * string) -> int)) -> int *)

let f (env, g) =

let val s1 = getString(37)

val s2 = getString(49)

in g(env,s1) + g(env,s2) end

Dan Grossman CSE341 Spring 2004, Lecture 25 6

'

&

$

%

More on private data

(* (’a * ((’a * string) -> int)) -> int *)

let f (env, g) =

let val s1 = getString(37)

val s2 = getString(49)

in g(env,s1) + g(env,s2) end

The last point is important in safe, lower-level languages (related to

my research), but is unnecessary in ML or Java:

• In ML, just use (string->int) -> int and have the caller “pass

the ’a” via a closure (a free variable in the function passed in.

– This works because the types of free variables do not appear in

a function type

• In Java, just “pass the ’a” as a field in the object that

implements the interface.

– This works because subtyping lets us “forget” we have fields.

Dan Grossman CSE341 Spring 2004, Lecture 25 7

'

&

$

%

What is subtyping good for?

• Passing in values with “extra” or “more useful” stuff

bool isXPos(Pt p) { p.x > 0; } // works fine for a Pt3D

But in ML, we end up encoding coercive subtyping using regular ML

functions that build new values:

type pt = { x : real, y : real}

type pt3D = { x : real, y : real, z : real }

fun isXPos (p:pt) = (#x p) > 0.0

val p3:pt3D = { x=4.0, y=3.0, z=5.0}

fun pt (p:pt3D) = { x=(#x p), y=(#y p)}

val _ = isXPos ((pt) p3)

Dan Grossman CSE341 Spring 2004, Lecture 25 8

'

&

$

%

What else is subtyping good for?

In addition to adding “public” fields, we can use it for private state:

interface I { int f(int); }

class MaxEver implements I {

int m = 0;

int f(int i) {

if(i > m)

i = m;

return m;

}

}

In ML, we encode private state using closures.

Dan Grossman CSE341 Spring 2004, Lecture 25 9

'

&

$

%

Wanting both

Could one language support subtype polymorphism and parametric

polymorphism?

• Sure; and the next generation of OO languages will

• C++ templates are sort of like parametric polymorphism, but they

duplicate code, so they’re a bit like macros

More interestingly, you may want both at once!

Pt withXZero(Pt p) { return new P(0,p.y); }

How could we make a version that worked for subtypes too?

Dan Grossman CSE341 Spring 2004, Lecture 25 10

'

&

$

%

Bounded Quantification
Here’s an excellent start:

interface I { Pt copy(Pt p); }

Pt withXZero(Pt p, I i) {

Pt ans = i.copy(p); ans.x = 0; return ans;

}

But consider using it for a Pt3D:

• copy method will have to downcast argument.

• user of withXZero will have to downcast result.

Enter bounded quantification:

interface I<’a> { ’a copy(’a p); }

’a withXZero(’a p, I<’a> i) where ’a <: Pt {

’a ans = i.copy(p); ans.x = 0; return ans;

}

Dan Grossman CSE341 Spring 2004, Lecture 25 11

'

&

$

%

How did that work?
• No downcasts.

• Without the bound, ans.x would not typecheck.

• At call-sites of withXZero, just check the instantiation for ’a is a

subtype of Pt

In general, in a language with subtyping (t1<:t2) and parametric

polymorphism, a useful generalization of forall ’a. t is forall

’a<:t1 . t2. This allows fewer instantiations for ’a.

Advanced point: When is forall ’a<:t1. t2 a subtype of forall

’a<:t3. t4.

• Sound answer: contravariant bounds; covariant body.

• But that answer makes the subtyping question (for any two types,

is one a subtype of the other) undecidable! (1992 result)

• A common restriction in practice is invariant bounds.

Dan Grossman CSE341 Spring 2004, Lecture 25 12

