
'

&

$

%

CSE 341:
Programming Languages

Dan Grossman

Spring 2004

Lecture 24— Method Subtyping; Named Types; Classes vs. Types;

(Multiple) Interfaces; Coherence

Dan Grossman CSE341 Spring 2004, Lecture 24 1



'

&

$

%

Recall...

• OO static typing usually means no “message not understood”

(except if receiver is nil).

• A subsumption relation t1<:t2 and a subsumption rule can make

a sound type system less restrictive.

• For records (objects with only getters/setters), subtypes can add

fields or reorder fields, but cannot change the type of a field.

So field types must be invariant, else the getter or setter methods in

the subtype will have an unsound type:

• If the field becomes a subtype, the getter is wrong (see last

lecture).

• If the field becomes a supertype, the setter is wrong.

Dan Grossman CSE341 Spring 2004, Lecture 24 2



'

&

$

%

Methods

But this getter/setter stuff is really just an example of a more general

phenomenon: If a supertype has a method m taking arguments of

types t1, ..., tn and returning an argument of type t0, what can m

take and return in a subtype?

Since this is more general, let’s forget about fields:

t ::= [t10 m1:(t11,...), ..., tn0 mn(tn1,...)]

Now, when is t1<:t2?

Dan Grossman CSE341 Spring 2004, Lecture 24 3



'

&

$

%

Method Subtyping, part 1

One sound answer: A subtype can have more methods and rearrange

methods, but a method m must take arguments of the same type and

return arguments of the same type.

(This answer corresponds to Java and C++ because they also support

static overloading, which we’ll discuss later.)

Can we be less restrictive and still sound?

Yes: We can let the return type be a subtype. Why:

• Some code calling m will “know more” about what’s returned.

• Other code calling m will “still work” because of substitutability.

But what about the argument types...

Allowing subtypes is not sound!

Dan Grossman CSE341 Spring 2004, Lecture 24 4



'

&

$

%

Method Subtyping, part 2

What if we allow argument types to be supertypes? It’s sound! Why:

• Some code calling m can pass a larger collection of arguments.

• Other code calling m will “still work” because of substitutability.

The jargon: Method subtyping is “contravariant” in argument types

and “covariant” in return types.

The point: One method is a subtype of another if the arguments are

supertypes and the result is a subtype.

This is easily one of the 5 most important points in this course.

Never, ever think argument-types are covariant. You will be

tempted many times. You will never be right. Tell your

friends a guy with a PhD jumped up and down!

Dan Grossman CSE341 Spring 2004, Lecture 24 5



'

&

$

%

Connection to FP
Functions and methods are quite similar.

When is t1->t2 a subtype of t3->t4?

When t3 is a subtype of t1 and t2 is a subtype of t4.

Why the contravariance? For substitutability—a caller can “still” use a

t3.

Advanced point: Is there any difference? Yes, remember methods also

take a self argument bound late.

• And in a subtype, we can assume self has the subtype

• But that makes it a covariant argument-type!

• This is sound because cannot change the fact that a particular

value (bound to self) is passed.

• This is roughly why encoding late-binding in ML is awkward.

Dan Grossman CSE341 Spring 2004, Lecture 24 6



'

&

$

%

Named Types

In Java/C++/C#/..., types don’t look like [t10 m1:(t11,...),

..., tn0 mn(tn1,...)].

Instead they look like C where C is a class or interface.

But everything we just learned about subtyping still applies!

Yet the only subtyping is (the transitive closure of) declared subtypes

(e.g., class C extends D implements I,J).

Given types D, I, and J, ensure objects produced by class C’s

constructors can have subtypes (more methods, contra/co, etc.)

Dan Grossman CSE341 Spring 2004, Lecture 24 7



'

&

$

%

The Grand Confusion

For convenience, many languages confuse classes and types:

• C is a class and a type

• If C extends D, then:

– instances of the class C inherit from the class D

– expressions of type C can be subsumed to have type D

Do you usually want this confusion? Probably.

Do you always want “subclass implies subtype”?

• No: Recall distTo for Point and 3DPoint.

Do you always want “subtype implies subclass”?

• No: Two classes with display methods may no inheritance

relationship.

Dan Grossman CSE341 Spring 2004, Lecture 24 8



'

&

$

%

Untangling Classes and Types

• Classes define object behavior; subclassing inherits behavior

• Subtyping defines substitutability

• You often want subclasses to be subtypes; most languages give

you no choice.

Now some other common features make more sense:

• “Abstract” methods:

– Expand the supertype without providing behavior to subclass

– Superclass does not implement behavior, so no constructors

allowed (an additional static check because the class is

abstract)

– The static-check is the only fundamental justification (trivial to

provide a method that raises an exception).

• Interfaces...

Dan Grossman CSE341 Spring 2004, Lecture 24 9



'

&

$

%

Interfaces

A Java interface is just a (named) object type.

By implementing an interface, you get subsumption but no behavior.

• Same thing with “multiple inheritance” when n − 1 superclasses

have all abstract methods. Should be called “multiple

subsumance”, but subsumance is not a word. :)

• None of the semantic issues we previously discussed with multiple

inheritance arise with interfaces.

• But there are two new issues we didn’t discuss before because

they’re about typing...

Dan Grossman CSE341 Spring 2004, Lecture 24 10



'

&

$

%

Multiple Supertype Issues

Most types have multiple supertypes; the issues arise from multiple

immediate supertypes.

• No least supertypes

– Java ends up with a pretty ad hoc rule for e1 ? e2 : e3

• “Coherence” problems: With the subtype relationship a dag, there

can be multiple ways to subsume from C to D.

– No problem with subtyping as we’ve seen, but some languages

have coercive subtyping

– Coercive subtyping means subsuming e from t1 to t2 (e.g., t2

x = e where e has type t1) may evaluate e to an object and

then assign x to a different (presumably related) object.

Dan Grossman CSE341 Spring 2004, Lecture 24 11



'

&

$

%

Implicit Coercions

Programmers just love the convenience:

• Float x = 3;

• Int y = x * 1.4;

• String s = y;

Languages end up with lots of rules to specify exactly where and how

such coercions occur.

• Example: Narrowing to int for y happens “after” multiplication.

If we ban implicit narrowing, it’s tempting to treat coercions as

subtyping and forget all the extra rules.

• Int<:Float, Int<:String, Float<:String

• Language can provide “built-in” coercions and/or let programmers

write their own (e.g., overload the cast operator in C++)

Dan Grossman CSE341 Spring 2004, Lecture 24 12



'

&

$

%

Coherence Problems
For s=y, a well-defined language will not allow an implementation to

choose whether s holds "4" or "4.0"! Solutions:

• Make coercions explicit (don’t treat as implicit subtyping) or

require only when it’s ambiguous.

• Go back to specifying how and where subsumption occurs

(complicated rules about “shortest paths” and such?)

• Make it so it doesn’t matter what subsumption is used; expression

will still be contextually equivalent.

– Suppose subsumption from Int to String always adds ".0".

– A coercive subtyping system with this property (path doesn’t

matter) is called “coherent” (just jargon).

– Impractical to check this for user-defined coercions, but a good

thing for users (that’s you) to think about.

Dan Grossman CSE341 Spring 2004, Lecture 24 13



'

&

$

%

Back to Named or Unnamed

For preventing “message not understood”, unnamed (“structural”)

types worked fine.

But many languages have named (“nominal”) types.

Which is better is a tired old argument, but fortunately it has some

interesting intellectual points (unlike emacs vs. vi).

First, frame the question more narrowly: Should subtyping be nominal

or structural? (Named types don’t preclude structural subtyping, e.g.

casting between two otherwise-unrelated interfaces.)

Dan Grossman CSE341 Spring 2004, Lecture 24 14



'

&

$

%

Some Fair Points
For structural subtyping:

• Allows more code reuse, while remaining sound.

• Does not require refactoring or adding “implements clauses”

later when you discover you could share some implementation.

• A simpler system (type names are just an abbreviation and

convenient way to write recursive types)

For nominal subtyping:

• Reject more code, which catches bugs and treating unmeaningful

method-name clashes as significant.

• Confusion with classes saves keystrokes and “doing everything

twice”?

• Fewer subtypes makes type-checking (??) and efficient

code-generation easier.

Dan Grossman CSE341 Spring 2004, Lecture 24 15


